In this paper, a partially linear single-index model is investigated, and three empirical log-likelihood ratio statistics for the unknown parameters in the model are suggested. It is proved that the proposed statistic...In this paper, a partially linear single-index model is investigated, and three empirical log-likelihood ratio statistics for the unknown parameters in the model are suggested. It is proved that the proposed statistics are asymptotically standard chi-square under some suitable conditions, and hence can be used to construct the confidence regions of the parameters. Our methods can also deal with the confidence region construction for the index in the pure single-index model. A simulation study indicates that, in terms of coverage probabilities and average areas of the confidence regions, the proposed methods perform better than the least-squares method.展开更多
In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the mode...In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.展开更多
As an extension of partially linear models and additive models, partially linear additive model is useful in statistical modelling. This paper proposes an empirical likelihood based approach for testing serial correla...As an extension of partially linear models and additive models, partially linear additive model is useful in statistical modelling. This paper proposes an empirical likelihood based approach for testing serial correlation in this semiparametric model. The proposed test method can test not only zero first-order serial correlation, but also higher-order serial correlation. Under the null hypothesis of no serial correlation, the test statistic is shown to follow asymptotically a chi-square distribution. Furthermore, a simulation study is conducted to illustrate the performance of the proposed method.展开更多
A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is prov...A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed.展开更多
An empirical likelihood approach to estimate the coefficients in linear model with interval censored responses is developed in this paper. By constructing unbiased transformation of interval censored data,an empirical...An empirical likelihood approach to estimate the coefficients in linear model with interval censored responses is developed in this paper. By constructing unbiased transformation of interval censored data,an empirical log-likelihood function with asymptotic X^2 is derived. The confidence regions for the coefficients are constructed. Some simulation results indicate that the method performs better than the normal approximation method in term of coverage accuracies.展开更多
基金supported by the Natural Science Foundation of Beijing City(Grant No.1042002)Technology Development Plan Project of Beijing Education Committee(Grant No.KM2005 10005009)+1 种基金the Special Grants of Beijing for Talents(Grant No.20041D0501515)supported by a grant from the Research Grants Council of Hong Kong,Hong Kong(Grant No.HKU7060/04P).
文摘In this paper, a partially linear single-index model is investigated, and three empirical log-likelihood ratio statistics for the unknown parameters in the model are suggested. It is proved that the proposed statistics are asymptotically standard chi-square under some suitable conditions, and hence can be used to construct the confidence regions of the parameters. Our methods can also deal with the confidence region construction for the index in the pure single-index model. A simulation study indicates that, in terms of coverage probabilities and average areas of the confidence regions, the proposed methods perform better than the least-squares method.
基金China Postdoctoral Science Foundation Funded Project (20080430633)Shanghai Postdoctoral Scientific Program (08R214121)+3 种基金the National Natural Science Foundation of China (10871013)the Research Fund for the Doctoral Program of Higher Education (20070005003)the Natural Science Foundation of Beijing (1072004)the Basic Research and Frontier Technology Foundation of He'nan (072300410090)
文摘In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.
基金Chuanhua Wei’s research was supported by the National Natural Science Foundation of China(11301565)Jin Yang’s research was supported by the Post-doctoral Fellowship of Nankai University
文摘As an extension of partially linear models and additive models, partially linear additive model is useful in statistical modelling. This paper proposes an empirical likelihood based approach for testing serial correlation in this semiparametric model. The proposed test method can test not only zero first-order serial correlation, but also higher-order serial correlation. Under the null hypothesis of no serial correlation, the test statistic is shown to follow asymptotically a chi-square distribution. Furthermore, a simulation study is conducted to illustrate the performance of the proposed method.
基金The first author was supported by the National Natural Science Foundation of China (Grant No. 10571008)the Natural Science Foundation of Beijing (Grant No. 1072004)+1 种基金the Science and Technology Development Project of Education Committee of Beijing City (Grant No. KM200510005009)The second author was supported by a grant of the Research Grant Council of Hong Kong (Grant No. HKBU7060/04P)
文摘A partially linear model with longitudinal data is considered, empirical likelihood to infer- ence for the regression coefficients and the baseline function is investigated, the empirical log-likelihood ratios is proven to be asymptotically chi-squared, and the corresponding confidence regions for the pa- rameters of interest are then constructed. Also by the empirical likelihood ratio functions, we can obtain the maximum empirical likelihood estimates of the regression coefficients and the baseline function, and prove the asymptotic normality. The numerical results are conducted to compare the performance of the empirical likelihood and the normal approximation-based method, and a real example is analysed.
文摘An empirical likelihood approach to estimate the coefficients in linear model with interval censored responses is developed in this paper. By constructing unbiased transformation of interval censored data,an empirical log-likelihood function with asymptotic X^2 is derived. The confidence regions for the coefficients are constructed. Some simulation results indicate that the method performs better than the normal approximation method in term of coverage accuracies.