The mainshock of April 20,2013 Sichuan Lushan MS7.0 earthquake was relocated using a 3-D velocity model.Double difference algorithm was applied to relocate aftershock sequences of Lushan earthquake.The locations of 24...The mainshock of April 20,2013 Sichuan Lushan MS7.0 earthquake was relocated using a 3-D velocity model.Double difference algorithm was applied to relocate aftershock sequences of Lushan earthquake.The locations of 2405 aftershocks were determined.The location errors in E-W,N-S and U-D direction were 0.30,0.29 and 0.59 km on average,respectively.The location of the mainshock is 102.983°E,30.291°N and the focal depth is 17.6 km.The relocation results show that the aftershocks spread approximately 35 km in length and 16 km in width.The dominant distribution of the focal depth ranges from 10 to 20 km.A few earthquakes occurred in the shallow crust.Focal depth profiles show fault planes dip to the northwest,manifested itself as a listric thrust fault.The dip angle is steep in the shallow crust and gentle in the deep crust.Although the epicenters of aftershocks distributed mainly along both sides of the Shuangshi-Dachuan fault,the seismogenic fault may be a blind thrust fault on the eastern side of the Shuangshi-Dachuan fault.Earthquake relocation results reveal that there is a southeastward tilt aftershock belt intersecting with the seismogenic fault with y-shape.We speculate it is a back thrust fault that often appears in a thrust fault system.Lushan earthquake triggered the seismic activity of the back thrust fault.展开更多
The 2021 Qinghai Maduo M_(S)7.4 earthquake was one of the strongest earthquakes that occurred in the Bayan Har block of the Tibetan Plateau during the past 30 years,which spatially filled in the gap of strong earthqua...The 2021 Qinghai Maduo M_(S)7.4 earthquake was one of the strongest earthquakes that occurred in the Bayan Har block of the Tibetan Plateau during the past 30 years,which spatially filled in the gap of strong earthquake in the eastern section of the northern block boundary.In this study,the aftershock sequence within 8 days after the mainshock was relocated by double difference algorithm.The results show that the total length of the aftershock zone is approximately 170 km;the mainshock epicenter is located in the center of the aftershock zone,indicating a bilateral rupture.The aftershocks are mainly distributed along NWW direction with an overall strike of 285°.The focal depth profiles indicate that the seismogenic fault is nearly vertical and dips to southwest or northeast in different sections,indicating a complex geometry.There is an aftershock gap located to the southeast of the mainshock epicenter with a scale of approximately 20 km.At the eastern end of the aftershock zone,horsetaillike branch faults show the terminal effect of a large strike-slip fault.There is a NW-trending aftershock zone on the north side of the western section,which may be a branch fault triggered by the mainshock.The location of the aftershock sequence is close to the eastern section of the Kunlun Mountain Pass-Jiangcuo(KMPJ)fault.The sequence overlaps well with surface trace of the KMPJ fault.We speculate that the KMPJ fault is the main seismogenic fault of the M_(S)7.4 Maduo earthquake.展开更多
The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the p...The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the period of 1992-1999. In total, 79706 readings for P waves and 72169 readings for S waves were used in the relocation, and the source parameters of 6496 events were obtained. The relocation results revealed a more complete picture of the hypocentral distribution in the central-western China. In several seismic belts the relocated epicenters present a more defined lineation feature, reflecting the close correlation between the seismicity and the active tectonic structures. The relocated focal depths confirmed that most earthquakes (91 percent of the 6496 relocated events) in the central-western China were located at shallower depths not deeper than 20 km. The distribution of focal depths indicates that the seismogenic layer in the central-western China is located in the upper-mid crust with its thickness no deeper than 20 km.展开更多
基金supported by the National Natural Science Foundation of China(41074068)the National Science and Technology Support Program(2012BAK19B01)China National Special Fund for Earthquake Scientific Research in Public Interest(201308013)and Scientific Investigation of April 20,2013 M7.0 Lushan,Sichuan Earthquake
文摘The mainshock of April 20,2013 Sichuan Lushan MS7.0 earthquake was relocated using a 3-D velocity model.Double difference algorithm was applied to relocate aftershock sequences of Lushan earthquake.The locations of 2405 aftershocks were determined.The location errors in E-W,N-S and U-D direction were 0.30,0.29 and 0.59 km on average,respectively.The location of the mainshock is 102.983°E,30.291°N and the focal depth is 17.6 km.The relocation results show that the aftershocks spread approximately 35 km in length and 16 km in width.The dominant distribution of the focal depth ranges from 10 to 20 km.A few earthquakes occurred in the shallow crust.Focal depth profiles show fault planes dip to the northwest,manifested itself as a listric thrust fault.The dip angle is steep in the shallow crust and gentle in the deep crust.Although the epicenters of aftershocks distributed mainly along both sides of the Shuangshi-Dachuan fault,the seismogenic fault may be a blind thrust fault on the eastern side of the Shuangshi-Dachuan fault.Earthquake relocation results reveal that there is a southeastward tilt aftershock belt intersecting with the seismogenic fault with y-shape.We speculate it is a back thrust fault that often appears in a thrust fault system.Lushan earthquake triggered the seismic activity of the back thrust fault.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1504103)the National Natural Science Foundation of China(Grant No.41774067)+1 种基金the Special Fund of the Institute of Geophysics,China Earthquake Administration(Grant No.DQJB20X07)S&T Program of Qinghai Province(Grant No.2020-ZJ-752).
文摘The 2021 Qinghai Maduo M_(S)7.4 earthquake was one of the strongest earthquakes that occurred in the Bayan Har block of the Tibetan Plateau during the past 30 years,which spatially filled in the gap of strong earthquake in the eastern section of the northern block boundary.In this study,the aftershock sequence within 8 days after the mainshock was relocated by double difference algorithm.The results show that the total length of the aftershock zone is approximately 170 km;the mainshock epicenter is located in the center of the aftershock zone,indicating a bilateral rupture.The aftershocks are mainly distributed along NWW direction with an overall strike of 285°.The focal depth profiles indicate that the seismogenic fault is nearly vertical and dips to southwest or northeast in different sections,indicating a complex geometry.There is an aftershock gap located to the southeast of the mainshock epicenter with a scale of approximately 20 km.At the eastern end of the aftershock zone,horsetaillike branch faults show the terminal effect of a large strike-slip fault.There is a NW-trending aftershock zone on the north side of the western section,which may be a branch fault triggered by the mainshock.The location of the aftershock sequence is close to the eastern section of the Kunlun Mountain Pass-Jiangcuo(KMPJ)fault.The sequence overlaps well with surface trace of the KMPJ fault.We speculate that the KMPJ fault is the main seismogenic fault of the M_(S)7.4 Maduo earthquake.
文摘The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the period of 1992-1999. In total, 79706 readings for P waves and 72169 readings for S waves were used in the relocation, and the source parameters of 6496 events were obtained. The relocation results revealed a more complete picture of the hypocentral distribution in the central-western China. In several seismic belts the relocated epicenters present a more defined lineation feature, reflecting the close correlation between the seismicity and the active tectonic structures. The relocated focal depths confirmed that most earthquakes (91 percent of the 6496 relocated events) in the central-western China were located at shallower depths not deeper than 20 km. The distribution of focal depths indicates that the seismogenic layer in the central-western China is located in the upper-mid crust with its thickness no deeper than 20 km.