Grain refinement by cyclic heat treatment and deformation induced transformation technique of the refractory low-alloy steel and 12Cr1MoV was studied. Three cyclic heat treatments and a single-pass hot rolling process...Grain refinement by cyclic heat treatment and deformation induced transformation technique of the refractory low-alloy steel and 12Cr1MoV was studied. Three cyclic heat treatments and a single-pass hot rolling process by a Gleeble-1500 system were performed. The results show that the austenite grain sizes are affected by the cyclic quenching number, quencher, heating temperature before rolling, deforming tem- perature, strain and strain rate. The ferrite grain sizes are affected by the austenite grain refinement, deforming temperature, strain and the quenching cooling rate. The ferrite with grain size of around 3μm may be produced by the technique.展开更多
Increasingly harsh service conditions place higher requirements for the high strain-rate performance of titanium alloys.Adiabatic shear band(ASB),a phenomenon prone to dynamic loading,is often accom-panied by catastro...Increasingly harsh service conditions place higher requirements for the high strain-rate performance of titanium alloys.Adiabatic shear band(ASB),a phenomenon prone to dynamic loading,is often accom-panied by catastrophic damage.Yet,it is unclear how the internal nanostructures are related to shear instability.Here we report detailed microstructural evolution in the ASB of a titanium alloy via in-depth focused ion beam(FIB),transmission Kikuchi diffraction(TKD),and high-resolution transmission electron microscope(HRTEM)analyses,with the deformation instability phenomenon discussed from the energy perspective.The ASB interior undergoes multifaceted changes,namely deformation-induced beta-to-alpha transformation and deformation-induced martensitic transformation to form substantially refined and heterogeneous structures.Meanwhile,two types of extremely fine twins are identified to occur within both nano-sized martensite and alpha phase.The critical plastic work representing the onset of adiabatic shear instability and dynamic equilibrium is observed to be constant for a specific structure in the same deformation mode.The energy analysis could be extended to other materials subjected to high strain-rate dynamic deformation.展开更多
The application of components often depends to a large extent on the properties of the surface layer.A novel process chain for the production of components with a hardened surface layer from metastable austenitic stee...The application of components often depends to a large extent on the properties of the surface layer.A novel process chain for the production of components with a hardened surface layer from metastable austenitic steel was presented.The investigated metastable austenitic AISI 347 steel was cold-drawn in solution annealed condition at cryogenic temperatures for pre-hardening,followed by post-hardening via cryogenic turning.The increase in hardness in both processes was due to strain hardening and deformation-induced phase transformation from y-austenite to^-martensite.Cryogenic turning experiments were carried out with solution annealed AISI 347 steel as well as with solution annealed and subsequently cold-drawn AISI 347 steel.The thermomechanical load of the workpiece surface layer during the turning process as well as the resulting surface morphology was characterized.The forces and temperatures were higher in turning the cold-drawn AISI 347 steel than turning the solution annealed AISI 347 steel.After cryogenic turning of the solution annealed material,deformation-induced phase transformation and a significant increase in hardness were detected in the near-surface layer.In contrast,no additional phase transformation was observed after cryogenic turning of the cold-drawn AISI 347 steel.The maximum hardness in the surface layer was similar,whereas the hardness in the core of the cold-drawn AISI 347 steel was higher compared to that in the solution annealed AISI 347 steel.展开更多
文摘Grain refinement by cyclic heat treatment and deformation induced transformation technique of the refractory low-alloy steel and 12Cr1MoV was studied. Three cyclic heat treatments and a single-pass hot rolling process by a Gleeble-1500 system were performed. The results show that the austenite grain sizes are affected by the cyclic quenching number, quencher, heating temperature before rolling, deforming tem- perature, strain and strain rate. The ferrite grain sizes are affected by the austenite grain refinement, deforming temperature, strain and the quenching cooling rate. The ferrite with grain size of around 3μm may be produced by the technique.
基金supported by the National Natural Science Foundation of China (NSFC) (Nos.51871168,52271012)the Natural Sciences and Engineering Research Council of Canada (NSERC)in the form of international research collaboration.Q.C.,A.H.F.,and S.J.Q.are grateful to the Southwest Institute of Technology and Engineering Cooperation Fund (No.HDHDW5902020102)H.W.acknowledges the financial support of the National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact (No.6142902220301).
文摘Increasingly harsh service conditions place higher requirements for the high strain-rate performance of titanium alloys.Adiabatic shear band(ASB),a phenomenon prone to dynamic loading,is often accom-panied by catastrophic damage.Yet,it is unclear how the internal nanostructures are related to shear instability.Here we report detailed microstructural evolution in the ASB of a titanium alloy via in-depth focused ion beam(FIB),transmission Kikuchi diffraction(TKD),and high-resolution transmission electron microscope(HRTEM)analyses,with the deformation instability phenomenon discussed from the energy perspective.The ASB interior undergoes multifaceted changes,namely deformation-induced beta-to-alpha transformation and deformation-induced martensitic transformation to form substantially refined and heterogeneous structures.Meanwhile,two types of extremely fine twins are identified to occur within both nano-sized martensite and alpha phase.The critical plastic work representing the onset of adiabatic shear instability and dynamic equilibrium is observed to be constant for a specific structure in the same deformation mode.The energy analysis could be extended to other materials subjected to high strain-rate dynamic deformation.
文摘The application of components often depends to a large extent on the properties of the surface layer.A novel process chain for the production of components with a hardened surface layer from metastable austenitic steel was presented.The investigated metastable austenitic AISI 347 steel was cold-drawn in solution annealed condition at cryogenic temperatures for pre-hardening,followed by post-hardening via cryogenic turning.The increase in hardness in both processes was due to strain hardening and deformation-induced phase transformation from y-austenite to^-martensite.Cryogenic turning experiments were carried out with solution annealed AISI 347 steel as well as with solution annealed and subsequently cold-drawn AISI 347 steel.The thermomechanical load of the workpiece surface layer during the turning process as well as the resulting surface morphology was characterized.The forces and temperatures were higher in turning the cold-drawn AISI 347 steel than turning the solution annealed AISI 347 steel.After cryogenic turning of the solution annealed material,deformation-induced phase transformation and a significant increase in hardness were detected in the near-surface layer.In contrast,no additional phase transformation was observed after cryogenic turning of the cold-drawn AISI 347 steel.The maximum hardness in the surface layer was similar,whereas the hardness in the core of the cold-drawn AISI 347 steel was higher compared to that in the solution annealed AISI 347 steel.