为更加精确地模拟复杂地形地区大气边界层中气象要素,将NASA发布的SRTM3(约90m分辨率)地形高度数据引入中尺度气象模式WRF(weather research and forecasting)中,结合四种边界层参数化方案(YSU、ACM2、MYN2.5level TKE(简称MYN)、Bougea...为更加精确地模拟复杂地形地区大气边界层中气象要素,将NASA发布的SRTM3(约90m分辨率)地形高度数据引入中尺度气象模式WRF(weather research and forecasting)中,结合四种边界层参数化方案(YSU、ACM2、MYN2.5level TKE(简称MYN)、Bougeault and Lacarrere TKE(简称BL))及模式自带地形数据GTOPO30(约1km分辨率),模拟了2008年4月24—25日安徽黄山及周边地区大气边界层气象要素场变化特征,并对模式输出的2m气温、2m露点温度、10m风速、湿度廓线与模拟区域内19个气象站及2个探空站数据进行比较。结果表明,无论采用哪种地形数据,四种边界层参数化方案中,YSU方案模拟的2m气温误差最小,ACM2方案模拟的2m露点温度和10m风速误差最小;采用SRTM3数据后,四种边界层参数化方案模拟的2m气温平均均方根误差(root mean squared error,RMSE)分别降低了3.79%(YSU方案)、2.48%(ACM2方案)、3.8%(MYN方案)、0.87%(BL方案);对2m露点温度模拟,除MYN方案模拟平均RMSE降低了0.59%外,其他三种方案模拟误差分别增加了1.39%(YSU方案)、0.49%(BL方案)、0.89%(ACM2方案);而对10m风速的模拟结果,除ACM2方案模拟平均RMSE降低了2.28%外,其他三种方案模拟误差分别增加了0.22%(YSU方案)、2.32%(MYN方案)、2.45%(BL方案);对2个探空站点湿度廓线的模拟显示,各边界层方案均能模拟出水汽的垂直变化趋势,但模拟效果总体表现为偏湿,采用SRTM3地形数据之后,ACM2方案模拟部分时刻的低层水汽廓线有所改善。展开更多
本文利用WRF(Weather Research and Forecasting)模式耦合Noah陆面过程模式,对比研究了使用不同精度陆面资料:WRF默认陆面资料、中国1 km分辨率数字高程模型数据集、2006年MODIS(MODerate-resolution Imaging Spectroradiometer)土地利...本文利用WRF(Weather Research and Forecasting)模式耦合Noah陆面过程模式,对比研究了使用不同精度陆面资料:WRF默认陆面资料、中国1 km分辨率数字高程模型数据集、2006年MODIS(MODerate-resolution Imaging Spectroradiometer)土地利用和植被覆盖度资料,WRF模式对兰州地区冬季气象场模拟结果的差异。结果表明,近地面气温对陆面资料的精度非常敏感,而风场对陆面资料的精度不敏感,WRF模式对气温的模拟效果好于对风场模拟。采用高精度且时效性好的陆面资料后,WRF模拟的近地面气温准确率提高了15.8%,模拟的夜间气温改进幅度较白天大。陆面资料可影响整个边界层温度场分布,准确的陆面资料对提高WRF模式模拟近地面乃至整个边界层气象场至关重要。尽管风速模拟误差较大,但总体上WRF模式能较准确地模拟出研究区的风场演变特征。使用新的陆面资料后WRF模拟的风速误差略有减小,风向误差略有增加。干旱半干旱区冬季数值模拟需要注意土壤湿度初值和模式初始积分时刻对模拟结果的影响。展开更多
文摘为更加精确地模拟复杂地形地区大气边界层中气象要素,将NASA发布的SRTM3(约90m分辨率)地形高度数据引入中尺度气象模式WRF(weather research and forecasting)中,结合四种边界层参数化方案(YSU、ACM2、MYN2.5level TKE(简称MYN)、Bougeault and Lacarrere TKE(简称BL))及模式自带地形数据GTOPO30(约1km分辨率),模拟了2008年4月24—25日安徽黄山及周边地区大气边界层气象要素场变化特征,并对模式输出的2m气温、2m露点温度、10m风速、湿度廓线与模拟区域内19个气象站及2个探空站数据进行比较。结果表明,无论采用哪种地形数据,四种边界层参数化方案中,YSU方案模拟的2m气温误差最小,ACM2方案模拟的2m露点温度和10m风速误差最小;采用SRTM3数据后,四种边界层参数化方案模拟的2m气温平均均方根误差(root mean squared error,RMSE)分别降低了3.79%(YSU方案)、2.48%(ACM2方案)、3.8%(MYN方案)、0.87%(BL方案);对2m露点温度模拟,除MYN方案模拟平均RMSE降低了0.59%外,其他三种方案模拟误差分别增加了1.39%(YSU方案)、0.49%(BL方案)、0.89%(ACM2方案);而对10m风速的模拟结果,除ACM2方案模拟平均RMSE降低了2.28%外,其他三种方案模拟误差分别增加了0.22%(YSU方案)、2.32%(MYN方案)、2.45%(BL方案);对2个探空站点湿度廓线的模拟显示,各边界层方案均能模拟出水汽的垂直变化趋势,但模拟效果总体表现为偏湿,采用SRTM3地形数据之后,ACM2方案模拟部分时刻的低层水汽廓线有所改善。
文摘本文利用WRF(Weather Research and Forecasting)模式耦合Noah陆面过程模式,对比研究了使用不同精度陆面资料:WRF默认陆面资料、中国1 km分辨率数字高程模型数据集、2006年MODIS(MODerate-resolution Imaging Spectroradiometer)土地利用和植被覆盖度资料,WRF模式对兰州地区冬季气象场模拟结果的差异。结果表明,近地面气温对陆面资料的精度非常敏感,而风场对陆面资料的精度不敏感,WRF模式对气温的模拟效果好于对风场模拟。采用高精度且时效性好的陆面资料后,WRF模拟的近地面气温准确率提高了15.8%,模拟的夜间气温改进幅度较白天大。陆面资料可影响整个边界层温度场分布,准确的陆面资料对提高WRF模式模拟近地面乃至整个边界层气象场至关重要。尽管风速模拟误差较大,但总体上WRF模式能较准确地模拟出研究区的风场演变特征。使用新的陆面资料后WRF模拟的风速误差略有减小,风向误差略有增加。干旱半干旱区冬季数值模拟需要注意土壤湿度初值和模式初始积分时刻对模拟结果的影响。