In this paper,two information leakage resistant quantum dialogue(QD)protocols over a collective-noise channel are proposed.Decoherence-free subspace(DFS)is used to erase the influence from two kinds of collective nois...In this paper,two information leakage resistant quantum dialogue(QD)protocols over a collective-noise channel are proposed.Decoherence-free subspace(DFS)is used to erase the influence from two kinds of collective noise,i.e.,collective-dephasing noise and collective-rotation noise,where each logical qubit is composed of two physical qubits and free from noise.In each of the two proposed protocols,the secret messages are encoded on the initial logical qubits via two composite unitary operations.Moreover,the single-photon measurements rather than the Bell-state measurements or the more complicated measurements are needed for decoding,making the two proposed protocols easier to implement.The initial state of each logical qubit is privately shared between the two authenticated users through the direct transmission of its auxiliary counterpart.Consequently,the information leakage problem is avoided in the two proposed protocols.Moreover,the detailed security analysis also shows that Eve’s several famous active attacks can be effectively overcome,such as the Trojan horse attack,the intercept-resend attack,the measure-resend attack,the entangle-measure attack and the correlation-elicitation(CE)attack.展开更多
In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.T...In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.展开更多
To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
Two protocols for transmitting an unknown single-photon state and an unknown non-maximally entangledEPR state are presented by using the quantum channel of three-phonton GHZ (Greenberger-Horne-Zeilinger) state,which c...Two protocols for transmitting an unknown single-photon state and an unknown non-maximally entangledEPR state are presented by using the quantum channel of three-phonton GHZ (Greenberger-Horne-Zeilinger) state,which can be realized with unitary success probability when collective noise is taken into account.The protocols canalso be generalized to transmit multi-photon state or to realize quantum communication in collective noise channel.展开更多
We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum commu...We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum communication between Alice, the sender, and Bob, the receiver. We first derive the collective-rotation noise model for the six-state protocol and then parameterize the mutual information between Alice and Eve. We then derive quantum bit error rate for three interceptresend attack scenarios. We observe that the six-state protocol is robust against intercept-resend attacks on collective rotation noise channels when the rotation angle is kept within certain bounds.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11375152 and 61402407)the Natural Science Foundation of Zhejiang Province(Grant No.LQ12F02012)
文摘In this paper,two information leakage resistant quantum dialogue(QD)protocols over a collective-noise channel are proposed.Decoherence-free subspace(DFS)is used to erase the influence from two kinds of collective noise,i.e.,collective-dephasing noise and collective-rotation noise,where each logical qubit is composed of two physical qubits and free from noise.In each of the two proposed protocols,the secret messages are encoded on the initial logical qubits via two composite unitary operations.Moreover,the single-photon measurements rather than the Bell-state measurements or the more complicated measurements are needed for decoding,making the two proposed protocols easier to implement.The initial state of each logical qubit is privately shared between the two authenticated users through the direct transmission of its auxiliary counterpart.Consequently,the information leakage problem is avoided in the two proposed protocols.Moreover,the detailed security analysis also shows that Eve’s several famous active attacks can be effectively overcome,such as the Trojan horse attack,the intercept-resend attack,the measure-resend attack,the entangle-measure attack and the correlation-elicitation(CE)attack.
基金supported by the National Natural Science Foundation of China(Grant Nos.61402407 and 11375152)
文摘In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
基金Supported by the National Natural Science Foundation of China under Grant No.10704011the Research Project of the Education Department of Liaoning Province of China under Grant No.2008006
文摘Two protocols for transmitting an unknown single-photon state and an unknown non-maximally entangledEPR state are presented by using the quantum channel of three-phonton GHZ (Greenberger-Horne-Zeilinger) state,which can be realized with unitary success probability when collective noise is taken into account.The protocols canalso be generalized to transmit multi-photon state or to realize quantum communication in collective noise channel.
基金Project supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation
文摘We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum communication between Alice, the sender, and Bob, the receiver. We first derive the collective-rotation noise model for the six-state protocol and then parameterize the mutual information between Alice and Eve. We then derive quantum bit error rate for three interceptresend attack scenarios. We observe that the six-state protocol is robust against intercept-resend attacks on collective rotation noise channels when the rotation angle is kept within certain bounds.