The characterization of agronomically important genes has great potential for the improvement of wheat.However,progress in wheat genetics and functional genomics has been impeded by the high complexity and enormous si...The characterization of agronomically important genes has great potential for the improvement of wheat.However,progress in wheat genetics and functional genomics has been impeded by the high complexity and enormous size of the wheat genome.Recent advances in genome sequencing and sequence assembly have produced a high-quality genome sequence for wheat.Here,we suggest that the strategies used to characterize biological mechanisms in model species,including mutant preparation and characterization,gene cloning methods,and improved transgenic technology,can be applied to wheat biology.These strategies will accelerate progress in wheat biology and promote wheat breeding program development.We also outline recent advances in wheat functional genomics.Finally,we discuss the future of wheat functional genomics and the rational design-based molecular breeding of new wheat varieties to contribute to world food security.展开更多
基金financially supported by the National Key Research and Development Program of China(2017YFD0101001)the Beijing Municipal Government Science Foundation,China(IDHT20170513)the Starting Grant from Hebei Agricultural University,China(YJ201958)。
文摘The characterization of agronomically important genes has great potential for the improvement of wheat.However,progress in wheat genetics and functional genomics has been impeded by the high complexity and enormous size of the wheat genome.Recent advances in genome sequencing and sequence assembly have produced a high-quality genome sequence for wheat.Here,we suggest that the strategies used to characterize biological mechanisms in model species,including mutant preparation and characterization,gene cloning methods,and improved transgenic technology,can be applied to wheat biology.These strategies will accelerate progress in wheat biology and promote wheat breeding program development.We also outline recent advances in wheat functional genomics.Finally,we discuss the future of wheat functional genomics and the rational design-based molecular breeding of new wheat varieties to contribute to world food security.