AIM: Nuclear factor kappa B (NF-κB) regulates a large number of genes involved in the inflammatory response to critical illnesses, but it is not known if and how NF-KB is activated and intercellular adhesion molecule...AIM: Nuclear factor kappa B (NF-κB) regulates a large number of genes involved in the inflammatory response to critical illnesses, but it is not known if and how NF-KB is activated and intercellular adhesion molecule-1 (ICAM-1) expressed in the gut following traumatic brain injury (TBI). The aim of current study was to investigate the temporal pattern of intestinal NF-κB activation and ICAM-1 expression following TBI. METHODS: Male Wistar rats were randomly divided into six groups (6 rats in each group) including controls with sham operation and TBI groups at hours 3, 12, 24, and 72, and on d 7. Parietal brain contusion was adopted using weight-dropping method. All rats were decapitated at corresponding time point and mid-jejunum samples were taken. NF-KB binding activity in jejunal tissue was measured using EMSA. Immunohistochemistry was used for detection of ICAM-1 expression in jejunal samples. RESULTS: There was a very low NF-κB binding activity and little ICAM-1 expression in the gut of control rats after sham surgery. NF-KB binding activity in jejunum significantly increased by 160% at 3 h following TBI (P<0.05 vs control), peaked at 72 h (500% increase) and remained elevated on d 7 post-injury by 390% increase. Compared to controls, ICAM-1 was significantly up-regulated on the endothelia of microvessels in villous interstitium and lamina propria by 24 h following TBI and maximally expressed at 72 h post-injury (P<0.001). The endothelial ICAM-1 immunoreactivity in jejunal mucosa still remained strong on d 7 post-injury. The peak of NF-κB activation and endothelial ICAM-1 expression coincided in time with the period during which secondary mucosal injury of the gut was also at their culmination following TBI. CONCLUSION: TBI could induce an immediate and persistent up-regulation of NF-κB activity and subsequent up-regulation of ICAM-1 expression in the intestine. Inflammatory response mediated by increased NF-κB activation and ICAM-1 expression may play an important role in the pathogenesis of acute gut展开更多
目的探索CX3CR1对创伤性骨髓炎大鼠骨骼肌微纤维、ERK/MAPK信号通路及炎症反应的影响。方法选取30只SPF级SD雄性大鼠,依据随机数字表法分为健康组、模型组、CX3CR1抑制组,每组10只。除健康组外,其余各组均建立创伤性骨髓炎模型。其中健...目的探索CX3CR1对创伤性骨髓炎大鼠骨骼肌微纤维、ERK/MAPK信号通路及炎症反应的影响。方法选取30只SPF级SD雄性大鼠,依据随机数字表法分为健康组、模型组、CX3CR1抑制组,每组10只。除健康组外,其余各组均建立创伤性骨髓炎模型。其中健康组、模型组大鼠均每日常规腹腔注射生理盐水,CX3CR1干预组向残腔内注射CX3CR1中和抗体进行处理。采用ELISA法检测血清中IL-6、IL-10、IL-1β、TGF-β水平,应用改良X线Norden评分检测骨骼肌微纤维,HE染色观察病理变化,免疫印迹及PCR检测股骨组织中细胞外信号调节蛋白激酶(Extracellular regulated protein kinase,ERK1/2)、丝裂原活化蛋白激酶(Mitogen activated protein kinase,MAPK)蛋白及mRNA表达。结果与健康组比较,模型组TGF-β、IL-1β、IL-10、IL-6等炎症因子含量均升高(P<0.05);与模型组比较,CX3CR1抑制组炎症因子含量降低(P<0.05)。与健康组比较,模型组随时间推移X线Norden评分升高(P<0.05);与模型组比较,CX3CR1抑制组X线Norden评分降低(P<0.05)。HE染色显示,健康组骨质完好;模型组可见大量炎性细胞浸润、灶性脓肿及坏死灶;CX3CR1抑制组大鼠的骨质明显改善,炎症反应降低。与健康组比较,模型组ERK1/2、MAPK蛋白及mRNA表达升高(P<0.05);与模型组比较,CX3CR1抑制组ERK1/2、MAPK蛋白及mRNA表达降低(P<0.05)。结论抑制CX3CR1可改善创伤性骨髓炎大鼠的疾病反应,可能与降低炎症反应、ERK/MAPK信号通路以及改善骨骼肌微纤维相关。展开更多
Background:Concussed patients have impaired reaction time(RT)and cognition following injury that may linger and impair driving performance.Limited research has used direct methods to assess driving-RT post-concussion....Background:Concussed patients have impaired reaction time(RT)and cognition following injury that may linger and impair driving performance.Limited research has used direct methods to assess driving-RT post-concussion.Our study compared driving RT during simulated scenarios between concussed and control individuals and examined driving-RT’s relationship with traditional computerized neurocognitive testing(CNT)domains.Methods:We employed a cross-sectional study among 14 concussed(15.9±9.8 days post-concussion,mean±SD)individuals and 14 healthy controls matched for age,sex,and driving experience.Participants completed a driving simulator and CNT(CNS Vital Signs)assessment within 48 h of symptom resolution.A driving-RT composite(ms)was derived from 3 simulated driving scenarios:stoplight(green to yellow),evasion(avoiding approaching vehicle),and pedestrian(person running in front of vehicle).The CNT domains included verbal and visual memory;CNT-RT(simple-,complex-,Stroop-RT individually);simple and complex attention;motor,psychomotor,and processing speed;executive function;and cognitive flexibility.Independent t tests and Hedge d effect sizes assessed driving-RT differences between groups,Pearson correlations(r)examined driving RT and CNT domain relationships among cohorts separately,and p values were controlled for false discovery rate via Benjamini-Hochberg procedures(a=0.05).Results:Concussed participants demonstrated slower driving-RT composite scores than controls(mean difference=292.86 ms;95%confidence interval(95%CI):70.18515.54;p=0.023;d=0.992).Evasion-RT(p=0.054;d=0.806),pedestrian-RT(p=0.258;d=0.312),and stoplight-RT(p=0.292;d=0.585)outcomes were not statistically significant after false-discovery rate corrections but demonstrated medium to large effect sizes for concussed deficits.Among concussed individuals,driving-RT outcomes did not significantly correlate with CNT domains(r-range:0.51 to 0.55;p>0.05).No correlations existed between driving-RT outcomes and CNT domains among control participants eith展开更多
基金Supported by Scientific Research Foundation of the Chinese PLA Key Medical Programs During the 10th Five-Year Plan Period, No. 01Z011
文摘AIM: Nuclear factor kappa B (NF-κB) regulates a large number of genes involved in the inflammatory response to critical illnesses, but it is not known if and how NF-KB is activated and intercellular adhesion molecule-1 (ICAM-1) expressed in the gut following traumatic brain injury (TBI). The aim of current study was to investigate the temporal pattern of intestinal NF-κB activation and ICAM-1 expression following TBI. METHODS: Male Wistar rats were randomly divided into six groups (6 rats in each group) including controls with sham operation and TBI groups at hours 3, 12, 24, and 72, and on d 7. Parietal brain contusion was adopted using weight-dropping method. All rats were decapitated at corresponding time point and mid-jejunum samples were taken. NF-KB binding activity in jejunal tissue was measured using EMSA. Immunohistochemistry was used for detection of ICAM-1 expression in jejunal samples. RESULTS: There was a very low NF-κB binding activity and little ICAM-1 expression in the gut of control rats after sham surgery. NF-KB binding activity in jejunum significantly increased by 160% at 3 h following TBI (P<0.05 vs control), peaked at 72 h (500% increase) and remained elevated on d 7 post-injury by 390% increase. Compared to controls, ICAM-1 was significantly up-regulated on the endothelia of microvessels in villous interstitium and lamina propria by 24 h following TBI and maximally expressed at 72 h post-injury (P<0.001). The endothelial ICAM-1 immunoreactivity in jejunal mucosa still remained strong on d 7 post-injury. The peak of NF-κB activation and endothelial ICAM-1 expression coincided in time with the period during which secondary mucosal injury of the gut was also at their culmination following TBI. CONCLUSION: TBI could induce an immediate and persistent up-regulation of NF-κB activity and subsequent up-regulation of ICAM-1 expression in the intestine. Inflammatory response mediated by increased NF-κB activation and ICAM-1 expression may play an important role in the pathogenesis of acute gut
文摘目的探索CX3CR1对创伤性骨髓炎大鼠骨骼肌微纤维、ERK/MAPK信号通路及炎症反应的影响。方法选取30只SPF级SD雄性大鼠,依据随机数字表法分为健康组、模型组、CX3CR1抑制组,每组10只。除健康组外,其余各组均建立创伤性骨髓炎模型。其中健康组、模型组大鼠均每日常规腹腔注射生理盐水,CX3CR1干预组向残腔内注射CX3CR1中和抗体进行处理。采用ELISA法检测血清中IL-6、IL-10、IL-1β、TGF-β水平,应用改良X线Norden评分检测骨骼肌微纤维,HE染色观察病理变化,免疫印迹及PCR检测股骨组织中细胞外信号调节蛋白激酶(Extracellular regulated protein kinase,ERK1/2)、丝裂原活化蛋白激酶(Mitogen activated protein kinase,MAPK)蛋白及mRNA表达。结果与健康组比较,模型组TGF-β、IL-1β、IL-10、IL-6等炎症因子含量均升高(P<0.05);与模型组比较,CX3CR1抑制组炎症因子含量降低(P<0.05)。与健康组比较,模型组随时间推移X线Norden评分升高(P<0.05);与模型组比较,CX3CR1抑制组X线Norden评分降低(P<0.05)。HE染色显示,健康组骨质完好;模型组可见大量炎性细胞浸润、灶性脓肿及坏死灶;CX3CR1抑制组大鼠的骨质明显改善,炎症反应降低。与健康组比较,模型组ERK1/2、MAPK蛋白及mRNA表达升高(P<0.05);与模型组比较,CX3CR1抑制组ERK1/2、MAPK蛋白及mRNA表达降低(P<0.05)。结论抑制CX3CR1可改善创伤性骨髓炎大鼠的疾病反应,可能与降低炎症反应、ERK/MAPK信号通路以及改善骨骼肌微纤维相关。
基金the Office of the Vice President of Research at the University of Georgia.
文摘Background:Concussed patients have impaired reaction time(RT)and cognition following injury that may linger and impair driving performance.Limited research has used direct methods to assess driving-RT post-concussion.Our study compared driving RT during simulated scenarios between concussed and control individuals and examined driving-RT’s relationship with traditional computerized neurocognitive testing(CNT)domains.Methods:We employed a cross-sectional study among 14 concussed(15.9±9.8 days post-concussion,mean±SD)individuals and 14 healthy controls matched for age,sex,and driving experience.Participants completed a driving simulator and CNT(CNS Vital Signs)assessment within 48 h of symptom resolution.A driving-RT composite(ms)was derived from 3 simulated driving scenarios:stoplight(green to yellow),evasion(avoiding approaching vehicle),and pedestrian(person running in front of vehicle).The CNT domains included verbal and visual memory;CNT-RT(simple-,complex-,Stroop-RT individually);simple and complex attention;motor,psychomotor,and processing speed;executive function;and cognitive flexibility.Independent t tests and Hedge d effect sizes assessed driving-RT differences between groups,Pearson correlations(r)examined driving RT and CNT domain relationships among cohorts separately,and p values were controlled for false discovery rate via Benjamini-Hochberg procedures(a=0.05).Results:Concussed participants demonstrated slower driving-RT composite scores than controls(mean difference=292.86 ms;95%confidence interval(95%CI):70.18515.54;p=0.023;d=0.992).Evasion-RT(p=0.054;d=0.806),pedestrian-RT(p=0.258;d=0.312),and stoplight-RT(p=0.292;d=0.585)outcomes were not statistically significant after false-discovery rate corrections but demonstrated medium to large effect sizes for concussed deficits.Among concussed individuals,driving-RT outcomes did not significantly correlate with CNT domains(r-range:0.51 to 0.55;p>0.05).No correlations existed between driving-RT outcomes and CNT domains among control participants eith