A series of active carbon supported ruthenium based catalysts, promoted by alkali and alkaline earth nitrate, are prepared by impregnation method and with RuCl 3·3H 2O as precursor. Effects of support, promoter a...A series of active carbon supported ruthenium based catalysts, promoted by alkali and alkaline earth nitrate, are prepared by impregnation method and with RuCl 3·3H 2O as precursor. Effects of support, promoter and preparation conditions on catalytic activity are discussed. The catalytic activity is evaluated with a fixed bed micro reactor at lower pressure. The results show that the impregnation sequence affects the catalytic activity obviously. Ba Ru K/C is the preferred impregnation sequence. And effects of nature, producing area and pre treatment of the support on catalytic activity are also examined. Catalytic activity increases with the amount of Ru deposited on the support, it attains maximum when Ru loading is 8%. Optimal molar ratio of promoter to Ru is 10.展开更多
Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
文摘A series of active carbon supported ruthenium based catalysts, promoted by alkali and alkaline earth nitrate, are prepared by impregnation method and with RuCl 3·3H 2O as precursor. Effects of support, promoter and preparation conditions on catalytic activity are discussed. The catalytic activity is evaluated with a fixed bed micro reactor at lower pressure. The results show that the impregnation sequence affects the catalytic activity obviously. Ba Ru K/C is the preferred impregnation sequence. And effects of nature, producing area and pre treatment of the support on catalytic activity are also examined. Catalytic activity increases with the amount of Ru deposited on the support, it attains maximum when Ru loading is 8%. Optimal molar ratio of promoter to Ru is 10.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.