Spinal cord injury(SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina whichoccurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic...Spinal cord injury(SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina whichoccurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic accidents, gunshot injuries, knife injuries, falls and sports injuries. There is a strong relationship between functional status and whether the injury is complete or not complete, as well as the level of the injury. The results of SCI bring not only damage to independence and physical function, but also include many complications from the injury. Neurogenic bladder and bowel, urinary tract infections, pressure ulcers, orthostatic hypotension, fractures, deep vein thrombosis, spasticity, autonomic dysreflexia, pulmonary and cardiovascular problems, and depressive disorders are frequent complications after SCI. SCI leads to serious disability in the patient resulting in the loss of work, which brings psychosocial and economic problems. The treatment and rehabilitation period is long, expensive and exhausting in SCI. Whether complete or incomplete, SCI rehabilitation is a long process that requires patience and motivation of the patient and relatives. Early rehabilitation is important to prevent joint contractures and the loss of muscle strength, conservation of bone density, and to ensure normal functioning of the respiratory and digestive system. An interdisciplinary approach is essential in rehabilitation in SCI, as in the other types of rehabilitation. The team is led by a physiatrist and consists of the patients' family, physiotherapist, occupational therapist, dietician, psychologist, speech therapist, social worker and other consultant specialists as necessary.展开更多
Our previous studies showed that ferroptosis plays an important role in the acute and subacute stages of spinal cord injury.High intracellular iron levels and low glutathione levels make oligodendrocytes vulnerable to...Our previous studies showed that ferroptosis plays an important role in the acute and subacute stages of spinal cord injury.High intracellular iron levels and low glutathione levels make oligodendrocytes vulnerable to cell death after central nervous system trauma.In this study,we established an oligodendrocyte(OLN-93 cell line)model of ferroptosis induced by RSL-3,an inhibitor of glutathione peroxidase 4(GPX4).RSL-3 significantly increased intracellular concentrations of reactive oxygen species and malondialdehyde.RSL-3 also inhibited the main antiferroptosis pathway,i.e.,SLC7A11/glutathione/glutathione peroxidase 4(xCT/GSH/GPX4),and downregulated acyl-coenzyme A synthetase long chain family member 4.Furthermore,we evaluated the ability of several compounds to rescue oligodendrocytes from ferroptosis.Liproxstatin-1 was more potent than edaravone or deferoxamine.Liproxstatin-1 not only inhibited mitochondrial lipid peroxidation,but also restored the expression of GSH,GPX4 and ferroptosis suppressor protein 1.These findings suggest that GPX4 inhibition induces ferroptosis in oligodendrocytes,and that liproxstatin-1 is a potent inhibitor of ferroptosis.Therefore,liproxstatin-1 may be a promising drug for the treatment of central nervous system diseases.展开更多
Nerve conduit is one of strategies for spine cord injury(SCI)treatment.Recently,studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site.However,the scaffold by ...Nerve conduit is one of strategies for spine cord injury(SCI)treatment.Recently,studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site.However,the scaffold by itself was difficult to meet the need of SCI functional recovery.The basic fibroblast growth factor(bFGF)administration significantly promotes functional recovery after organ injuries.Here,using a rat model of T9 hemisected SCI,we aimed at assessing the repair capacity of implantation of collagen scaffold(CS)modified by collagen binding bFGF(CBD-bFGF).The results showed that CS combined with CBD-bFGF treatment improved survival rates after the lateral hemisection SCI.The CS/CBD-bFGF group showed more significant improvements in motor than the simply CS-implanted and untreated control group,when evaluated by the 21-point Basso-Beattie-Bresnahan(BBB)score and footprint analysis.Both hematoxylin and eosin(H&E)and immunohistochemical staining of neurofilament(NF)and glial fibrillary acidic protein(GFAP)demonstrated that fibers were guided to grow through the implants.These findings indicated that administration of CS modified with CBD-bFGF could promote spinal cord regeneration and functional recovery.展开更多
Spinal cord injury(SCI)remains a severe condition with an extremely high disability rate.The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the cent...Spinal cord injury(SCI)remains a severe condition with an extremely high disability rate.The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system.In the past few decades,researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling.展开更多
文摘Spinal cord injury(SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina whichoccurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic accidents, gunshot injuries, knife injuries, falls and sports injuries. There is a strong relationship between functional status and whether the injury is complete or not complete, as well as the level of the injury. The results of SCI bring not only damage to independence and physical function, but also include many complications from the injury. Neurogenic bladder and bowel, urinary tract infections, pressure ulcers, orthostatic hypotension, fractures, deep vein thrombosis, spasticity, autonomic dysreflexia, pulmonary and cardiovascular problems, and depressive disorders are frequent complications after SCI. SCI leads to serious disability in the patient resulting in the loss of work, which brings psychosocial and economic problems. The treatment and rehabilitation period is long, expensive and exhausting in SCI. Whether complete or incomplete, SCI rehabilitation is a long process that requires patience and motivation of the patient and relatives. Early rehabilitation is important to prevent joint contractures and the loss of muscle strength, conservation of bone density, and to ensure normal functioning of the respiratory and digestive system. An interdisciplinary approach is essential in rehabilitation in SCI, as in the other types of rehabilitation. The team is led by a physiatrist and consists of the patients' family, physiotherapist, occupational therapist, dietician, psychologist, speech therapist, social worker and other consultant specialists as necessary.
基金supported by the National Natural Science Foundation of China,Nos.81672171(to XY),81972074(to XY),81930070(to SQF),81620108018(to SQF),and 81772342(to GZN)the National Key R&D Program of China,No.2019YFA0112100(to SQF)the Natural Science Foundation of Tianjin of China,No.19JCZDJC34900(to XY)。
文摘Our previous studies showed that ferroptosis plays an important role in the acute and subacute stages of spinal cord injury.High intracellular iron levels and low glutathione levels make oligodendrocytes vulnerable to cell death after central nervous system trauma.In this study,we established an oligodendrocyte(OLN-93 cell line)model of ferroptosis induced by RSL-3,an inhibitor of glutathione peroxidase 4(GPX4).RSL-3 significantly increased intracellular concentrations of reactive oxygen species and malondialdehyde.RSL-3 also inhibited the main antiferroptosis pathway,i.e.,SLC7A11/glutathione/glutathione peroxidase 4(xCT/GSH/GPX4),and downregulated acyl-coenzyme A synthetase long chain family member 4.Furthermore,we evaluated the ability of several compounds to rescue oligodendrocytes from ferroptosis.Liproxstatin-1 was more potent than edaravone or deferoxamine.Liproxstatin-1 not only inhibited mitochondrial lipid peroxidation,but also restored the expression of GSH,GPX4 and ferroptosis suppressor protein 1.These findings suggest that GPX4 inhibition induces ferroptosis in oligodendrocytes,and that liproxstatin-1 is a potent inhibitor of ferroptosis.Therefore,liproxstatin-1 may be a promising drug for the treatment of central nervous system diseases.
基金supported by National Natural Science Foundation of China(81101369,81071450)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China(to Shi Qin),Ph.D.Programs Foundation of State Education Ministry(20113201110013)+1 种基金Jiangsu Provincial Special Program of Medical Science(BL2012004,BK2011264)Jiangsu Province’s Key Provincial Talents Program(RC2011102)
文摘Nerve conduit is one of strategies for spine cord injury(SCI)treatment.Recently,studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site.However,the scaffold by itself was difficult to meet the need of SCI functional recovery.The basic fibroblast growth factor(bFGF)administration significantly promotes functional recovery after organ injuries.Here,using a rat model of T9 hemisected SCI,we aimed at assessing the repair capacity of implantation of collagen scaffold(CS)modified by collagen binding bFGF(CBD-bFGF).The results showed that CS combined with CBD-bFGF treatment improved survival rates after the lateral hemisection SCI.The CS/CBD-bFGF group showed more significant improvements in motor than the simply CS-implanted and untreated control group,when evaluated by the 21-point Basso-Beattie-Bresnahan(BBB)score and footprint analysis.Both hematoxylin and eosin(H&E)and immunohistochemical staining of neurofilament(NF)and glial fibrillary acidic protein(GFAP)demonstrated that fibers were guided to grow through the implants.These findings indicated that administration of CS modified with CBD-bFGF could promote spinal cord regeneration and functional recovery.
基金This work was supported by grants from the National Key Research and Development Program of China(No.2016YFA0100800,2021YFA1101301)the National Natural Science Foundation of China(Grant Nos.82225027,81873994,81820108013,81901902,31727801,82202702,and 82202351)as well as the State Key Program of the National Natural Science Foundation of China(No.81330030).
文摘Spinal cord injury(SCI)remains a severe condition with an extremely high disability rate.The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system.In the past few decades,researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling.