By using the theory of clipping voltage-switches, two kinds of master/slave nMOS quaternary flip-flops are designed. These flip-flops have the capability of two-input presetting and double-rail complementary outputs. ...By using the theory of clipping voltage-switches, two kinds of master/slave nMOS quaternary flip-flops are designed. These flip-flops have the capability of two-input presetting and double-rail complementary outputs. It is shown that these flip-flops are effectively suitable to design nMOS quaternary sequential circuits by designing two examples of hexadecimal up-counter and decimal up-counter.展开更多
Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection...Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.展开更多
基金Suported by Youth Science & Technology Foundation of Ningbo Science & Technology Commission and by Natural Science Foundation of Zhejiang Proyince,China
文摘By using the theory of clipping voltage-switches, two kinds of master/slave nMOS quaternary flip-flops are designed. These flip-flops have the capability of two-input presetting and double-rail complementary outputs. It is shown that these flip-flops are effectively suitable to design nMOS quaternary sequential circuits by designing two examples of hexadecimal up-counter and decimal up-counter.
基金supported by the National Natural Science Foundation of China(U22A2075,U20A20209)the Fundamental Research Funds for the Central Universities(226-2022-00200)the Qianjiang Distinguished Experts program of Hangzhou.
文摘Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.