This article addresses a production planning optimization problem of overall refinery. The authors formulated the optimization problem as mixed integer linear programming. The model considers the main factors for opti...This article addresses a production planning optimization problem of overall refinery. The authors formulated the optimization problem as mixed integer linear programming. The model considers the main factors for optimizing the production plan of overall refinery related to the use of run-modes of processing units. The aim of this planning is to decide which run-mode to use in each processing unit in each period of a given horizon, to satisfy the demand, such as the total cost of production and inventory is minimized. The resulting model can be regarded as a generalized lot-sizing problem where a run-mode can produce and consume more than one product. The resulting optimization problem is large-sized and NP-hard. The authors have proposed a column generation-based algorithm called branch-and-price (BP) for solving the interested optimization problem. The model and implementation of the algorithm are described in detail in this article. The computational results verify the effectiveness of the proposed model and the solution method.展开更多
This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processe...This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processes and artificial neural networks (ANN) model which were validated using experimental data obtained from functioning crude oil distillation column of Port-Harcourt Refinery, Nigeria by MATLAB computer program. Ninety percent (90%) of the experimental data sets were used for training while ten percent (10%) were used for testing the networks. The maximum relative errors between the experimental and calculated data obtained from the output variables of the neural network for CODC design were 1.98 error % and 0.57 error % when ANN only and ANNBMC were used respectively while their respective values for the maximum relative error were 0.346 error % and 0.124 error % when they were used for the controller prediction. Larger number of iteration steps of below 2500 and 5000 were required to achieve convergence of less than 10-7?for the training error using ANNBMC for both the design of the CODC and controller respectively while less than 400 and 700 iteration steps were needed to achieve convergence of 10-4?using ANN only. The linear regression analysis performed revealed the minimum and maximum prediction accuracies to be 80.65% and 98.79%;and 98.38% and 99.98% when ANN and ANNBMC were used for the CODC design respectively. Also, the minimum and maximum prediction accuracies were 92.83% and 99.34%;and 98.89% and 99.71% when ANN and ANNBMC were used for the CODC controller respectively as both methodologies have excellent predictions. Hence, artificial neural networks based Monte Carlo simulation is an effective and better tool for the design and control of crude oil distillation column.展开更多
基金Supported by the National Natural Science Foundation for Distinguished Young Scholars of China (No.70425003), the National High Technology Research and Development Program of China (No.2006AA04Z174), the Natural Science Foundation of Liaoning Province (No.20061006) and the Enterprise Post-Doctorial Foundation of Liaoning Province.
文摘This article addresses a production planning optimization problem of overall refinery. The authors formulated the optimization problem as mixed integer linear programming. The model considers the main factors for optimizing the production plan of overall refinery related to the use of run-modes of processing units. The aim of this planning is to decide which run-mode to use in each processing unit in each period of a given horizon, to satisfy the demand, such as the total cost of production and inventory is minimized. The resulting model can be regarded as a generalized lot-sizing problem where a run-mode can produce and consume more than one product. The resulting optimization problem is large-sized and NP-hard. The authors have proposed a column generation-based algorithm called branch-and-price (BP) for solving the interested optimization problem. The model and implementation of the algorithm are described in detail in this article. The computational results verify the effectiveness of the proposed model and the solution method.
文摘This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processes and artificial neural networks (ANN) model which were validated using experimental data obtained from functioning crude oil distillation column of Port-Harcourt Refinery, Nigeria by MATLAB computer program. Ninety percent (90%) of the experimental data sets were used for training while ten percent (10%) were used for testing the networks. The maximum relative errors between the experimental and calculated data obtained from the output variables of the neural network for CODC design were 1.98 error % and 0.57 error % when ANN only and ANNBMC were used respectively while their respective values for the maximum relative error were 0.346 error % and 0.124 error % when they were used for the controller prediction. Larger number of iteration steps of below 2500 and 5000 were required to achieve convergence of less than 10-7?for the training error using ANNBMC for both the design of the CODC and controller respectively while less than 400 and 700 iteration steps were needed to achieve convergence of 10-4?using ANN only. The linear regression analysis performed revealed the minimum and maximum prediction accuracies to be 80.65% and 98.79%;and 98.38% and 99.98% when ANN and ANNBMC were used for the CODC design respectively. Also, the minimum and maximum prediction accuracies were 92.83% and 99.34%;and 98.89% and 99.71% when ANN and ANNBMC were used for the CODC controller respectively as both methodologies have excellent predictions. Hence, artificial neural networks based Monte Carlo simulation is an effective and better tool for the design and control of crude oil distillation column.