海上溢油的危险系数越来越高,给生态环境和经济发展带来巨大威胁。为更好地防范海上溢油,提出一种基于Web的溢油仿真系统。采用系统仿真能力强大的Matlab和简化溢油模型,用Matlab Web Server构建B/S模式的服务器,提供方便快捷的海上溢...海上溢油的危险系数越来越高,给生态环境和经济发展带来巨大威胁。为更好地防范海上溢油,提出一种基于Web的溢油仿真系统。采用系统仿真能力强大的Matlab和简化溢油模型,用Matlab Web Server构建B/S模式的服务器,提供方便快捷的海上溢油仿真分析。实践表明,该系统使用便捷、可扩展性较好。展开更多
Oil spill modeling is an important technical measure to evaluate the impact of oil spills scientifically. Because of the great uncertainty in its early development, simulation results have not been used as the basis o...Oil spill modeling is an important technical measure to evaluate the impact of oil spills scientifically. Because of the great uncertainty in its early development, simulation results have not been used as the basis of judgments for environmental compensation cases. Despite this, scientific research institutes in many countries, including China, are still devoted to the research and development of oil spill models and their applications in environmental damage assessment, which makes it possible to apply them in the judicial arbitration of damages claims. The relevant regulations on the Chinese compensation fund for oil pollution damage from ships and the judicial authentication of environmental damage have also accredited such kind of modeling applications. In order to enhance the applicability of oil spill model further, it is necessary to expand its damage assessment function, and to test, calibrate and verify the accuracy of the evaluation. To this end, the author adopts the self-developed 3-dimentionaloil spill model—CWCM to simulate the “Tasman Sea” oil spill accident. By comparing the simulation results of tidal current field, wind field, oil spill trajectory with those observed, the model coding and parameter selection are corrected, and it is realized that the simulation being basically consistent with the measured results. In addition, the results of the scale reduced simulation test of oil spill weathering are applied verifying and perfecting the weathering model of CWCM. The technical requirements and process for operational application of oil spill model in judicial arbitration are also put forward. In view of the rapid simulation function, the operational updating program for oil spill weathering model, coupled current model and dynamic update wind field diagnostic model are put forward in order to further improve the operational evaluation function and evaluation efficiency of oil spill model.展开更多
Oil spills can generate multiple effects in different time scales on the marine ecosystem. The numerical modeling of these processes is an important tool with low computational cost which provides a powerful appliance...Oil spills can generate multiple effects in different time scales on the marine ecosystem. The numerical modeling of these processes is an important tool with low computational cost which provides a powerful appliance to environmental agencies regarding the risk management. In this way, the objective of this work is to evaluate the influence of a number of physical forcing acting over a hypothetical oil spill along the Southern Brazilian Shelf. The numerical simulation was carried out using the ECOS model (Easy Coupling Oil System), an oil spill model developed at the Universidade Federal do Rio Grande—FURG, coupled with the tridimensional hydrodynamic model TELEMAC3D (EDF, France). The hydrodynamic model provides the current velocity, salinity and temperature fields used by the oil spill model to evaluate the behavior and the fate of the spilled oil. The results suggest that the local wind influence is the main forcing driven the fate of the spilled oil, and this forcing responds for more than 60% of the oil slick variability. The direction and intensity of the costal currents control between 20% and 40% of the oil variability, and the currents are important controlling the behavior and the tridimensional transportation of the oil. On the other hand, the turbulent diffusion is important for the horizontal drift of the oil. The weathering results indicate 40% of evaporation and 80% of emulsification, and the combination of these processes leads an increasing of the oil density around, 53.4 kg/m3 after 5 days of simulation.展开更多
文摘海上溢油的危险系数越来越高,给生态环境和经济发展带来巨大威胁。为更好地防范海上溢油,提出一种基于Web的溢油仿真系统。采用系统仿真能力强大的Matlab和简化溢油模型,用Matlab Web Server构建B/S模式的服务器,提供方便快捷的海上溢油仿真分析。实践表明,该系统使用便捷、可扩展性较好。
文摘Oil spill modeling is an important technical measure to evaluate the impact of oil spills scientifically. Because of the great uncertainty in its early development, simulation results have not been used as the basis of judgments for environmental compensation cases. Despite this, scientific research institutes in many countries, including China, are still devoted to the research and development of oil spill models and their applications in environmental damage assessment, which makes it possible to apply them in the judicial arbitration of damages claims. The relevant regulations on the Chinese compensation fund for oil pollution damage from ships and the judicial authentication of environmental damage have also accredited such kind of modeling applications. In order to enhance the applicability of oil spill model further, it is necessary to expand its damage assessment function, and to test, calibrate and verify the accuracy of the evaluation. To this end, the author adopts the self-developed 3-dimentionaloil spill model—CWCM to simulate the “Tasman Sea” oil spill accident. By comparing the simulation results of tidal current field, wind field, oil spill trajectory with those observed, the model coding and parameter selection are corrected, and it is realized that the simulation being basically consistent with the measured results. In addition, the results of the scale reduced simulation test of oil spill weathering are applied verifying and perfecting the weathering model of CWCM. The technical requirements and process for operational application of oil spill model in judicial arbitration are also put forward. In view of the rapid simulation function, the operational updating program for oil spill weathering model, coupled current model and dynamic update wind field diagnostic model are put forward in order to further improve the operational evaluation function and evaluation efficiency of oil spill model.
文摘Oil spills can generate multiple effects in different time scales on the marine ecosystem. The numerical modeling of these processes is an important tool with low computational cost which provides a powerful appliance to environmental agencies regarding the risk management. In this way, the objective of this work is to evaluate the influence of a number of physical forcing acting over a hypothetical oil spill along the Southern Brazilian Shelf. The numerical simulation was carried out using the ECOS model (Easy Coupling Oil System), an oil spill model developed at the Universidade Federal do Rio Grande—FURG, coupled with the tridimensional hydrodynamic model TELEMAC3D (EDF, France). The hydrodynamic model provides the current velocity, salinity and temperature fields used by the oil spill model to evaluate the behavior and the fate of the spilled oil. The results suggest that the local wind influence is the main forcing driven the fate of the spilled oil, and this forcing responds for more than 60% of the oil slick variability. The direction and intensity of the costal currents control between 20% and 40% of the oil variability, and the currents are important controlling the behavior and the tridimensional transportation of the oil. On the other hand, the turbulent diffusion is important for the horizontal drift of the oil. The weathering results indicate 40% of evaporation and 80% of emulsification, and the combination of these processes leads an increasing of the oil density around, 53.4 kg/m3 after 5 days of simulation.