Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultur...Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca-Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca-Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca-Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid-liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca-Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca-Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca-Mg/biochar were in the order of Ca-Mg/B600 〉 Ca-Mg/B4S0 〉 Ca-Mg/B300. Results revealed that postsorption Ca-Mg/biochar can continually release P and is more suitable for an acid environment.展开更多
MnO2 loaded weak basic anion exchange resin D301 (Anion exchange resin, macroreticular weak basic styrene) as adsorbent has been prepared and applied to the removal of cadmium. The adsorption characteristics have be...MnO2 loaded weak basic anion exchange resin D301 (Anion exchange resin, macroreticular weak basic styrene) as adsorbent has been prepared and applied to the removal of cadmium. The adsorption characteristics have been investigated with respect to effect of pH, equilibrium isotherms, removal kinetic data, and interference of the coexisting ions. The results indicated that the Cd^2+ could be efficiently removed using MnO2 loaded D301 resin in the pH range of 3-8 from aqueous solutions with the co-existence of high concentration of alkali and alkaline-earth metals ions. The saturate adsorption capacity of the Cd^2+ was 77.88 mg/g. The adsorption process followed the pseudo first-order kinetics. The equilibrium data obtained in this study accorded excellently with the Langmuir adsorption isotherm.展开更多
This paper proposes a new approach to mial function of transmission error (TE) for spiral design and implement a seventh-order polyno- bevel gears with an aim to reduce the running vibration and noise of gear drive ...This paper proposes a new approach to mial function of transmission error (TE) for spiral design and implement a seventh-order polyno- bevel gears with an aim to reduce the running vibration and noise of gear drive and improve the loaded distribution of the tooth. Based on the constraint conditions of predesigned seventh-order polynomial function curve and the theory of linear algebra, the polynomial coefficients of the seventh-order polynomial function of transmission error can be obtained. By applying a method named reverse tooth contact analysis, the modified roll coefficients as well as parts of machine-tool settings for the face-milling of spiral bevel gears can be individually determined. Therefore, a predesigned seventh-order polynomial function of transmission error for spiral bevel gears can be obtained by the modified roll with high-order coef- ficients, and comparisons of the seventh-order polynomial and parabolic functions of transmission error are also performed. The achievement of spiral bevel gears with the seventh-order function of transmission error can be accomplished on a universal Cartesian-type hypoid gear generator or a numerically controlled cradle-style hypoid gear generator due to its simple generating motion of axes of the cradle and the work piece. The results of a numerical example show that the bending stresses of the tooth of seventh-order are less than those of a parabolic one, while the contact stresses remain almost eouivalent.展开更多
More efficient drug delivery system and formulation with less adverse effects are needed for the clinical application of broad-spectrum antineoplastic agent doxorubicin(DOX). Here we obtained outer-membrane vesicles(O...More efficient drug delivery system and formulation with less adverse effects are needed for the clinical application of broad-spectrum antineoplastic agent doxorubicin(DOX). Here we obtained outer-membrane vesicles(OMVs), a nano-sized proteoliposomes naturally released by Gram-negative bacteria, from attenuated Klebsiella pneumonia and prepared doxorubicin-loaded O0MVs(DOX-OMV). Confocal microscopy and in vivo distribution study observed that DOX encapsulated in OMVs was efficiently transported into NSCLC A549 cells. DOX-OMV resulted in intensive cytotoxic effects and cell apoptosis in vitro as evident from MTT assay, Western blotting and flow cytometry due to the rapid cellular uptake of DOX. In A549 tumor-bearing BALB/c nude mice, DOX-OMV presented a substantial tumor growth inhibition with favorable tolerability and pharmacokinetic profile, and TUNEL assay and H&E staining displayed extensive apoptotic cells and necrosis in tumor tissues. More importantly, OMVs’ appropriate immunogenicity enabled the recruitment of macrophages in tumor microenvironment which might synergize with their cargo DOX in vivo. Our results suggest that OMVs can not only function as biological nanocarriers for chemotherapeutic agents but also elicit suitable immune responses, thus having a great potential for the tumor chemoimmunotherapy.展开更多
A new photocatalyst, TiO_2 powder immobilized on polystyrene (PS) thin films,was prepared using a novel method and its photocatalytic activity on the photodegradation ofacridine dye in aqueous solution was tested. By ...A new photocatalyst, TiO_2 powder immobilized on polystyrene (PS) thin films,was prepared using a novel method and its photocatalytic activity on the photodegradation ofacridine dye in aqueous solution was tested. By this method, the crystal form and grain size of theimmobilized TiO_2 were well maintained. Compared with TiO_2 powder, the photocatalytic activity ofTiO_2/PS thin films was not significantly reduced. The catalyst is stable and can be reused severaltimes without the loss of activity, which makes wastewater treatment using this photocatalyticdegradation technique of this way possible in the practical application.展开更多
The occurrence of time-dependent cavitation and tensile stress in an oscillatory oil squeeze film were investigated experimentally. The test apparatus was a simple thrust bearing consisting of two parallel circular pl...The occurrence of time-dependent cavitation and tensile stress in an oscillatory oil squeeze film were investigated experimentally. The test apparatus was a simple thrust bearing consisting of two parallel circular plates separated by a thin viscous oil film. During the test, one plate was at rest while tne other (transparent) oscillated in a direction normal to its surface. This test configuration was chosen to avoid the rotational motion and complicated geometry of a squeeze film Journal bearing. The frequency of oscillation was in the range of 5 to 50 Hz and was controlled by an electro-magnetic exciter. The process of cavity formation and its subsequent development was recorded by a high-speed video camera. Concomitant pressure in the oil film was measured both within and without the cavitation region. It was found that both tensile stress and cavities existed in a squeeze film under certain working conditions.展开更多
A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth ...A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.展开更多
Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing wi...Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing with crossed axes has no common plane of action which results in a point contact and low tooth durability.Therefore,a geometry design approach assuming line contact is developed to analyze the tooth engagement process of crossed beveloid gears with small shaft angle for marine transmission applications.The loaded gear tooth contact behavior is simulated by applying a quasi-static analysis to study the effects of gearing parameters on mesh characteristics.Using the proposed method,a series of sensitivity analyses to examine the effects of critical gearing parameters such as shaft angle,cone angle,helix angle and profile-shift coefficient on the theoretical gear mesh is performed.The parametric analysis of pitch cone design shows that the dominant design parameters represented by the angle between the first principle directions(FPD) and normal angular factor are more sensitive to the shaft and cone angles than they are to the helix angle.The theoretical contact path is highly sensitive to the profile-shift coefficient,which is determined from the theoretical tooth contact analysis.The FPD angle is found to change the distribution of contact pattern,contact pressure and root stress as well as the translational transmission error and the variation of the mesh stiffness significantly.The contact pattern is clearly different between the drive and coast sides due to different designed FPD angles.Finally,a practical experimental setup for marine transmission is performed and tooth bearing test is conducted to demonstrate the proposed design procedure.The experimental result compared well with the simulation.Results of this study yield a better understanding of the geometry design and loaded gear mesh characteristics for crossed beveloid gears used in marine transmission.展开更多
Our previous studies suggested that redox reaction proceeded separately on specific exposed crystal faces of TiO2 nanoparticles. Site-selective deposition of metal or metal oxide on TiO2 specific exposed crystal faces...Our previous studies suggested that redox reaction proceeded separately on specific exposed crystal faces of TiO2 nanoparticles. Site-selective deposition of metal or metal oxide on TiO2 specific exposed crystal faces successfully proceeded using the unique reactivity properties on the surface of TiO2 nanoparticles under photoexcitation. A remarkable improvement ofphotocatalytic activity of shape- controlled brookite and rutile TiO2 nanorods with modification of Fe^3+ compounds was observed under visible light. Crystal face-selective metal compound modification on exposed crystal faces of TiO2 nanorods with brookite and futile phases was successfully prepared. Brookite and rutile TiO2 nanorods prepared by site-selective modification with metal compounds should be ideal visible-light responsive TiO2 photocatalysts because of the remarkable suppression of back electron transfer from TiO2 to oxidized metal com- pounds on the surface of the TiO2 nanorod with a brookite or rutile phase. In this paper, the development of exposed crystal face-controlled TiO2 nanorods with rutile and brookite phases was described. The obtained rutile and brookite TiO2 nanorod, showing remarkably high activity for degra- dation of organic compounds compared with the photocatalytic activities of anatase fine particles (ST-01), is one of the most active commercially available photocatalysts for environmental cleanup in Japan. The technology of visiblelight responsive treatment for morphology-controlled rutile and brookite TiO2 nanorods by crystal face-selective modification of Fe^3+ compounds was also discussed in this paper. The Fe^3+ compound-modified rutile and brookite TiO2 nanorods show much higher activity than conventional visible-light responsive N-doped TiO2, which is commercially available in Japan.展开更多
The critical factor determining the in vivo effect of bone repair materials is the microenvironment,which greatly depends on their abilities to promote vascularization and bone formation.However,implant materials are ...The critical factor determining the in vivo effect of bone repair materials is the microenvironment,which greatly depends on their abilities to promote vascularization and bone formation.However,implant materials are far from ideal candidates for guiding bone regeneration due to their deficient angiogenic and osteogenic microenvironments.Herein,a double-network composite hydrogel combining vascular endothelial growth factor(VEGF)-mimetic peptide with hydroxyapatite(HA)precursor was developed to build an osteogenic microenvironment for bone repair.The hydrogel was prepared by mixing acrylatedβ-cyclodextrins and octacalcium phosphate(OCP),an HA precursor,with gelatin solution,followed by ultraviolet photo-crosslinking.To improve the angiogenic potential of the hydrogel,QK,a VEGF-mimicking peptide,was loaded in acrylatedβ-cyclodextrins.The QK-loaded hydrogel promoted tube formation of human umbilical vein endothelial cells and upregulated the expression of angiogenesis-related genes,such as Flt1,Kdr,and VEGF,in bone marrow mesenchymal stem cells.Moreover,QK could recruit bone marrow mesenchymal stem cells.Furthermore,OCP in the composite hydrogel could be transformed into HA and release calcium ions facilitating bone regeneration.The double-network composite hydrogel integrated QK and OCP showed obvious osteoinductive activity.The results of animal experiments showed that the composite hydrogel enhanced bone regeneration in skull defects of rats,due to perfect synergistic effects of QK and OCP on vascularized bone regeneration.In summary,improving the angiogenic and osteogenic microenvironments by our double-network composite hydrogel shows promising prospects for bone repair.展开更多
The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur inv...The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur involute pinion were introduced, and their relative errors are below 10%, except edge contact, which turns out that these two methods can compute contact stress of face-gear drive correctly and effectively. An agreement of the localized bearing contact stress is gotten for these two methods, making sure that the calculation results of FEM are reliable. The loaded meshing simulations of multi-tooth FEM model were developed, and the determination of the transmission error and the maximal load distribution factor of face-gear drive under torques were given. A formula for the maximal load distribution factor was proposed. By introducing the maximal load distribution factor in multi-tooth contact zone, a method for calculating the maximal contact stress in multi-tooth contact can be given. Compared to FEM, the results of these formulae are proved to be reliable, and the relative errors are below 10%.展开更多
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120008120013)the National Natural Science Foundation of China (No. 31401944)+2 种基金the Beijing Natural Science Foundation (No. 6144026)the China Scholarship Council (No. 201206355006)the Chinese Universities Scientific Fund of China Agricultural University (No. 2011JS169)
文摘Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca-Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca-Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca-Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid-liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca-Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca-Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca-Mg/biochar were in the order of Ca-Mg/B600 〉 Ca-Mg/B4S0 〉 Ca-Mg/B300. Results revealed that postsorption Ca-Mg/biochar can continually release P and is more suitable for an acid environment.
基金Project supported by Shanghai Municipal Committee of Science andTechnology(No.05JC14059)the National Natural Science Foun-dation of China(No.50478103)
文摘MnO2 loaded weak basic anion exchange resin D301 (Anion exchange resin, macroreticular weak basic styrene) as adsorbent has been prepared and applied to the removal of cadmium. The adsorption characteristics have been investigated with respect to effect of pH, equilibrium isotherms, removal kinetic data, and interference of the coexisting ions. The results indicated that the Cd^2+ could be efficiently removed using MnO2 loaded D301 resin in the pH range of 3-8 from aqueous solutions with the co-existence of high concentration of alkali and alkaline-earth metals ions. The saturate adsorption capacity of the Cd^2+ was 77.88 mg/g. The adsorption process followed the pseudo first-order kinetics. The equilibrium data obtained in this study accorded excellently with the Langmuir adsorption isotherm.
基金the National Science Foundation of China (Nos.51205310 and 51175423)the Fundamental Research Funds for the Central Universities (Nos.2013G3252005 and 2013G2252027)
文摘This paper proposes a new approach to mial function of transmission error (TE) for spiral design and implement a seventh-order polyno- bevel gears with an aim to reduce the running vibration and noise of gear drive and improve the loaded distribution of the tooth. Based on the constraint conditions of predesigned seventh-order polynomial function curve and the theory of linear algebra, the polynomial coefficients of the seventh-order polynomial function of transmission error can be obtained. By applying a method named reverse tooth contact analysis, the modified roll coefficients as well as parts of machine-tool settings for the face-milling of spiral bevel gears can be individually determined. Therefore, a predesigned seventh-order polynomial function of transmission error for spiral bevel gears can be obtained by the modified roll with high-order coef- ficients, and comparisons of the seventh-order polynomial and parabolic functions of transmission error are also performed. The achievement of spiral bevel gears with the seventh-order function of transmission error can be accomplished on a universal Cartesian-type hypoid gear generator or a numerically controlled cradle-style hypoid gear generator due to its simple generating motion of axes of the cradle and the work piece. The results of a numerical example show that the bending stresses of the tooth of seventh-order are less than those of a parabolic one, while the contact stresses remain almost eouivalent.
基金sponsored by Scientific and Innovative Action Plan of Shanghai(No.18431902800,China)National Natural Science Foundation of China(No.81572979)+1 种基金Project of Shanghai Health and Family Planning Commission(201940102,China)National Key Basic Research Program of China(2015CB931800)
文摘More efficient drug delivery system and formulation with less adverse effects are needed for the clinical application of broad-spectrum antineoplastic agent doxorubicin(DOX). Here we obtained outer-membrane vesicles(OMVs), a nano-sized proteoliposomes naturally released by Gram-negative bacteria, from attenuated Klebsiella pneumonia and prepared doxorubicin-loaded O0MVs(DOX-OMV). Confocal microscopy and in vivo distribution study observed that DOX encapsulated in OMVs was efficiently transported into NSCLC A549 cells. DOX-OMV resulted in intensive cytotoxic effects and cell apoptosis in vitro as evident from MTT assay, Western blotting and flow cytometry due to the rapid cellular uptake of DOX. In A549 tumor-bearing BALB/c nude mice, DOX-OMV presented a substantial tumor growth inhibition with favorable tolerability and pharmacokinetic profile, and TUNEL assay and H&E staining displayed extensive apoptotic cells and necrosis in tumor tissues. More importantly, OMVs’ appropriate immunogenicity enabled the recruitment of macrophages in tumor microenvironment which might synergize with their cargo DOX in vivo. Our results suggest that OMVs can not only function as biological nanocarriers for chemotherapeutic agents but also elicit suitable immune responses, thus having a great potential for the tumor chemoimmunotherapy.
基金This project is financially supported by the Natural Science Foundation of China (QT program)
文摘A new photocatalyst, TiO_2 powder immobilized on polystyrene (PS) thin films,was prepared using a novel method and its photocatalytic activity on the photodegradation ofacridine dye in aqueous solution was tested. By this method, the crystal form and grain size of theimmobilized TiO_2 were well maintained. Compared with TiO_2 powder, the photocatalytic activity ofTiO_2/PS thin films was not significantly reduced. The catalyst is stable and can be reused severaltimes without the loss of activity, which makes wastewater treatment using this photocatalyticdegradation technique of this way possible in the practical application.
文摘The occurrence of time-dependent cavitation and tensile stress in an oscillatory oil squeeze film were investigated experimentally. The test apparatus was a simple thrust bearing consisting of two parallel circular plates separated by a thin viscous oil film. During the test, one plate was at rest while tne other (transparent) oscillated in a direction normal to its surface. This test configuration was chosen to avoid the rotational motion and complicated geometry of a squeeze film Journal bearing. The frequency of oscillation was in the range of 5 to 50 Hz and was controlled by an electro-magnetic exciter. The process of cavity formation and its subsequent development was recorded by a high-speed video camera. Concomitant pressure in the oil film was measured both within and without the cavitation region. It was found that both tensile stress and cavities existed in a squeeze film under certain working conditions.
基金This project is supported by National Natural Science Foundation of China (No.E50575234).
文摘A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.
基金supported by Fundamental Research Funds for Central Universities of China (Grant No. CDJXS11111138,Key Projects in the National Science & Technology Pillar Program during the 11th Five-Year Plan Period of China(Grant No. 2011BAF09B07)National Natural Science Foundatlon of China(Grant No. 51175523)
文摘Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing with crossed axes has no common plane of action which results in a point contact and low tooth durability.Therefore,a geometry design approach assuming line contact is developed to analyze the tooth engagement process of crossed beveloid gears with small shaft angle for marine transmission applications.The loaded gear tooth contact behavior is simulated by applying a quasi-static analysis to study the effects of gearing parameters on mesh characteristics.Using the proposed method,a series of sensitivity analyses to examine the effects of critical gearing parameters such as shaft angle,cone angle,helix angle and profile-shift coefficient on the theoretical gear mesh is performed.The parametric analysis of pitch cone design shows that the dominant design parameters represented by the angle between the first principle directions(FPD) and normal angular factor are more sensitive to the shaft and cone angles than they are to the helix angle.The theoretical contact path is highly sensitive to the profile-shift coefficient,which is determined from the theoretical tooth contact analysis.The FPD angle is found to change the distribution of contact pattern,contact pressure and root stress as well as the translational transmission error and the variation of the mesh stiffness significantly.The contact pattern is clearly different between the drive and coast sides due to different designed FPD angles.Finally,a practical experimental setup for marine transmission is performed and tooth bearing test is conducted to demonstrate the proposed design procedure.The experimental result compared well with the simulation.Results of this study yield a better understanding of the geometry design and loaded gear mesh characteristics for crossed beveloid gears used in marine transmission.
基金financially supported by the Advanced Catalytic Transformation Program for Carbon Utilization(ACT-C)Japan Science and Technology Agency(JST)
文摘Our previous studies suggested that redox reaction proceeded separately on specific exposed crystal faces of TiO2 nanoparticles. Site-selective deposition of metal or metal oxide on TiO2 specific exposed crystal faces successfully proceeded using the unique reactivity properties on the surface of TiO2 nanoparticles under photoexcitation. A remarkable improvement ofphotocatalytic activity of shape- controlled brookite and rutile TiO2 nanorods with modification of Fe^3+ compounds was observed under visible light. Crystal face-selective metal compound modification on exposed crystal faces of TiO2 nanorods with brookite and futile phases was successfully prepared. Brookite and rutile TiO2 nanorods prepared by site-selective modification with metal compounds should be ideal visible-light responsive TiO2 photocatalysts because of the remarkable suppression of back electron transfer from TiO2 to oxidized metal com- pounds on the surface of the TiO2 nanorod with a brookite or rutile phase. In this paper, the development of exposed crystal face-controlled TiO2 nanorods with rutile and brookite phases was described. The obtained rutile and brookite TiO2 nanorod, showing remarkably high activity for degra- dation of organic compounds compared with the photocatalytic activities of anatase fine particles (ST-01), is one of the most active commercially available photocatalysts for environmental cleanup in Japan. The technology of visiblelight responsive treatment for morphology-controlled rutile and brookite TiO2 nanorods by crystal face-selective modification of Fe^3+ compounds was also discussed in this paper. The Fe^3+ compound-modified rutile and brookite TiO2 nanorods show much higher activity than conventional visible-light responsive N-doped TiO2, which is commercially available in Japan.
基金the National Natural Science Foundation of China(81925027,31872748,and 82111530157)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_3232)+3 种基金the Royal Society(IEC\NSFC\201166)the General Research Funding from the Research Grants Council of Hong Kong(14202920)the Health and Medical Research Fund,the Food and Health Bureau,the Government of the Hong Kong Special Administrative Region(08190416)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘The critical factor determining the in vivo effect of bone repair materials is the microenvironment,which greatly depends on their abilities to promote vascularization and bone formation.However,implant materials are far from ideal candidates for guiding bone regeneration due to their deficient angiogenic and osteogenic microenvironments.Herein,a double-network composite hydrogel combining vascular endothelial growth factor(VEGF)-mimetic peptide with hydroxyapatite(HA)precursor was developed to build an osteogenic microenvironment for bone repair.The hydrogel was prepared by mixing acrylatedβ-cyclodextrins and octacalcium phosphate(OCP),an HA precursor,with gelatin solution,followed by ultraviolet photo-crosslinking.To improve the angiogenic potential of the hydrogel,QK,a VEGF-mimicking peptide,was loaded in acrylatedβ-cyclodextrins.The QK-loaded hydrogel promoted tube formation of human umbilical vein endothelial cells and upregulated the expression of angiogenesis-related genes,such as Flt1,Kdr,and VEGF,in bone marrow mesenchymal stem cells.Moreover,QK could recruit bone marrow mesenchymal stem cells.Furthermore,OCP in the composite hydrogel could be transformed into HA and release calcium ions facilitating bone regeneration.The double-network composite hydrogel integrated QK and OCP showed obvious osteoinductive activity.The results of animal experiments showed that the composite hydrogel enhanced bone regeneration in skull defects of rats,due to perfect synergistic effects of QK and OCP on vascularized bone regeneration.In summary,improving the angiogenic and osteogenic microenvironments by our double-network composite hydrogel shows promising prospects for bone repair.
基金Project(50875263) supported by the National Natural Science Foundation of ChinaProject(2011CB706800) supported by the National Basic Research Program of ChinaProject(2010ssxt172) supported by the Natural Science Foundation of Hunan Province,China
文摘The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur involute pinion were introduced, and their relative errors are below 10%, except edge contact, which turns out that these two methods can compute contact stress of face-gear drive correctly and effectively. An agreement of the localized bearing contact stress is gotten for these two methods, making sure that the calculation results of FEM are reliable. The loaded meshing simulations of multi-tooth FEM model were developed, and the determination of the transmission error and the maximal load distribution factor of face-gear drive under torques were given. A formula for the maximal load distribution factor was proposed. By introducing the maximal load distribution factor in multi-tooth contact zone, a method for calculating the maximal contact stress in multi-tooth contact can be given. Compared to FEM, the results of these formulae are proved to be reliable, and the relative errors are below 10%.