In this paper, the turbulent attached cavitating flow around a Clark-Y hydrofoil is investigated by the large eddy simula- tion (LES) method coupled with a homogeneous cavitation model. The predicted lift coefficien...In this paper, the turbulent attached cavitating flow around a Clark-Y hydrofoil is investigated by the large eddy simula- tion (LES) method coupled with a homogeneous cavitation model. The predicted lift coefficient and the cavity volume show a distinctly quasi-periodic process with cavitation shedding and the results agree fairly well with the available experimental data. The present simulation accurately captures the main features of the unsteady cavitation transient behavior including the attached cavity growth, the sheet/cloud cavitation transition and the cloud cavitation collapse. The vortex shedding structure from a hydrofoil cavitating wake is identified by the Q- criterion, which implies that the large scale structures might slide and roll down along the suction side of the hydrofoil while being further developed at the downstream. Further analysis demonstrates that the turbulence level of the flow is clearly related to the cavitation and the turbulence velocity fluctuation is much influenced by the cavity shedding.展开更多
Large Eddy Simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3-D turbulent cavita- ting flows around a twisted hydrofoil. The wall-adapting local eddy-viscosity (WALE) model wa...Large Eddy Simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3-D turbulent cavita- ting flows around a twisted hydrofoil. The wall-adapting local eddy-viscosity (WALE) model was used to give the Sub-Grid Scale (SGS) stress term. The predicted 3-D cavitation evolutions, including the cavity growth, break-off and collapse downstream, and the shedding cycle as well as its frequency agree fairly well with experimental results. The mechanism for the interactions between the cavitation and the vortices was discussed based on the analysis of the vorticity transport equation related to the vortex stretching, volumetric expansion/contraction and baroclinic torque terms along the hydrofoil mid-plane. The vortical flow analysis demonstrates that cavitation promotes the vortex production and the flow unsteadiness. In non-cavitation conditions, the streamline smoothly passes along the upper wall of the hydrofoil with no boundary layer separation and the boundary layer is thin and attached to the foil except at the trailing edge. With decreasing cavitation number, the present case has O" = 1.07, and the attached sheet cavitation beco- mes highly unsteady, with periodic growth and break-off to form the cavitation cloud. The expansion due to cavitation induces boun- dary layer separation and significantly increases the vorticity magnitude at the cavity interface. A detailed analysis using the vorticity transport equation shows that the cavitation accelerates the vortex stretching and dilatation and increases the baroclinic torque as the major source of vorticity generation. Examination of the flow field shows that the vortex dilatation and baroclinic torque terms in- crease in the cavitating case to the same magnitude as the vortex stretching term, while for the non-cavitating case these two terms are zero.展开更多
The complex three-dimensional turbulent flows around a cylinder array with four cylinders in an in-line square configuration at a subcritical Reynolds number of 1.5 × 10^4 with the spacing ratio at L/D = 1.5 and ...The complex three-dimensional turbulent flows around a cylinder array with four cylinders in an in-line square configuration at a subcritical Reynolds number of 1.5 × 10^4 with the spacing ratio at L/D = 1.5 and 3.5 were investigated using the Large Eddy Simulation (LES). The full field vorticity and velocity distributions as well as turbulent quantities were calculated in detail and the near wake structures were presented. The results show that the bi-stable flow nature was observed at L/D = 1.5 and distinct vortex shedding of the upstream cylinders occurred at L/D = 3.5 at Re = 1.5 × 10^4. The techniques of Laser Doppler Anemometry (LDA) and Digital Particle Image Velocimetry (DPIV) are also employed to validate the present LES method. The results show that the numerical predictions are in excellent agreement with the experimental measurements. Therefore, the full field instantaneous and mean quantities of the flow field, velocity field and vorticity field can be extracted from the LES results for further study of the complex flow characteristics.展开更多
Idiopathic achalasia is a rare primary motility disorder of the esophagus. The classical features are incomplete relaxation of a frequently hypertensive lower esophageal sphincter (LES) and a lack of peristalsis in th...Idiopathic achalasia is a rare primary motility disorder of the esophagus. The classical features are incomplete relaxation of a frequently hypertensive lower esophageal sphincter (LES) and a lack of peristalsis in the tubular esophagus. These motor abnormalities lead to dysphagia, stasis, regurgitation, weight loss, or secondary respiratory complications. Although major strides have been made in understanding the pathogenesis of this rare disorder, including a probable autoimmune mediated destruction of inhibitory neurons in response to an unknown insult in genetically susceptible individuals, a definite trigger has not been identified. The diagnosis of achalasia is suggested by clinical features and conf irmed by further diagnostic tests, such as esophagogastroduodenoscopy (EGD), manometry or barium swallow. These studies are not only used to exclude pseudoachalasia, but also might help to categorize the disease by severity or clinical subtype. Recent advances in diagnostic methods, including high resolution manometry (HRM), might allow prediction of treatment responses. The primary treatments for achieving long-term symptom relief are surgery and endoscopic methods. Although limited high-quality data exist, it appears that laparoscopic Heller myotomy with partial fundoplication is superior to endoscopic methods in achieving long-term relief of symptoms in the majority of patients. However, the current clinical approach to achalasia will depend not only on patients' characteristics and clinical subtypes of the disease, but also on local expertise and patient preferences.展开更多
In the current paper, we have primarily addressed one powerful simulation tool developed during the last decades-Large Eddy Simulation (LES), which is most suitable for unsteady three-dimensional complex turbulent flo...In the current paper, we have primarily addressed one powerful simulation tool developed during the last decades-Large Eddy Simulation (LES), which is most suitable for unsteady three-dimensional complex turbulent flows in industry and natural environment. The main point in LES is that the large-scale motion is resolved while the small-scale motion is modeled or, in geophysical terminology, parameterized. With a view to devising a subgrid-scale(SGS) model of high quality, we have highlighted analyzing physical aspects in scale interaction and-energy transfer such as dissipation, backscatter, local and non-local interaction, anisotropy and resolution requirement. They are the factors responsible for where the advantages and disadvantages in existing SGS models come from. A case study on LES of turbulence in vegetative canopy is presented to illustrate that LES model is more based on physical arguments. Then, varieties of challenging complex turbulent flows in both industry and geophysical fields in the near future-are presented. In conclusion; we may say with confidence that new century shall see the flourish in the research of turbulence with the aid of LES combined with other approaches.展开更多
The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is...The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is based on the Navier-Stokes equations and Large-Eddy Simulation (LES) model. The SIMPLE algorithm with the body fitted coordinate and tetrahedroid grid system is applied for the solution of the discretization governing equations.展开更多
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.51576143,11472197)
文摘In this paper, the turbulent attached cavitating flow around a Clark-Y hydrofoil is investigated by the large eddy simula- tion (LES) method coupled with a homogeneous cavitation model. The predicted lift coefficient and the cavity volume show a distinctly quasi-periodic process with cavitation shedding and the results agree fairly well with the available experimental data. The present simulation accurately captures the main features of the unsteady cavitation transient behavior including the attached cavity growth, the sheet/cloud cavitation transition and the cloud cavitation collapse. The vortex shedding structure from a hydrofoil cavitating wake is identified by the Q- criterion, which implies that the large scale structures might slide and roll down along the suction side of the hydrofoil while being further developed at the downstream. Further analysis demonstrates that the turbulence level of the flow is clearly related to the cavitation and the turbulence velocity fluctuation is much influenced by the cavity shedding.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51206087, 51179091)the Major National Scientific Instrument and Equipment Development Project (Grant No. 2011YQ07004901)the China Postdoctoral Science Foundation (Grant Nos. 2011M500314,2012T50090)
文摘Large Eddy Simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3-D turbulent cavita- ting flows around a twisted hydrofoil. The wall-adapting local eddy-viscosity (WALE) model was used to give the Sub-Grid Scale (SGS) stress term. The predicted 3-D cavitation evolutions, including the cavity growth, break-off and collapse downstream, and the shedding cycle as well as its frequency agree fairly well with experimental results. The mechanism for the interactions between the cavitation and the vortices was discussed based on the analysis of the vorticity transport equation related to the vortex stretching, volumetric expansion/contraction and baroclinic torque terms along the hydrofoil mid-plane. The vortical flow analysis demonstrates that cavitation promotes the vortex production and the flow unsteadiness. In non-cavitation conditions, the streamline smoothly passes along the upper wall of the hydrofoil with no boundary layer separation and the boundary layer is thin and attached to the foil except at the trailing edge. With decreasing cavitation number, the present case has O" = 1.07, and the attached sheet cavitation beco- mes highly unsteady, with periodic growth and break-off to form the cavitation cloud. The expansion due to cavitation induces boun- dary layer separation and significantly increases the vorticity magnitude at the cavity interface. A detailed analysis using the vorticity transport equation shows that the cavitation accelerates the vortex stretching and dilatation and increases the baroclinic torque as the major source of vorticity generation. Examination of the flow field shows that the vortex dilatation and baroclinic torque terms in- crease in the cavitating case to the same magnitude as the vortex stretching term, while for the non-cavitating case these two terms are zero.
基金the Council of the Hong Kong Special Administrative Region, China (Grant No. PolyU5299/03E)the Research Program of the Wuhan University of Technology, China(Grant No. 471-38650324)
文摘The complex three-dimensional turbulent flows around a cylinder array with four cylinders in an in-line square configuration at a subcritical Reynolds number of 1.5 × 10^4 with the spacing ratio at L/D = 1.5 and 3.5 were investigated using the Large Eddy Simulation (LES). The full field vorticity and velocity distributions as well as turbulent quantities were calculated in detail and the near wake structures were presented. The results show that the bi-stable flow nature was observed at L/D = 1.5 and distinct vortex shedding of the upstream cylinders occurred at L/D = 3.5 at Re = 1.5 × 10^4. The techniques of Laser Doppler Anemometry (LDA) and Digital Particle Image Velocimetry (DPIV) are also employed to validate the present LES method. The results show that the numerical predictions are in excellent agreement with the experimental measurements. Therefore, the full field instantaneous and mean quantities of the flow field, velocity field and vorticity field can be extracted from the LES results for further study of the complex flow characteristics.
文摘Idiopathic achalasia is a rare primary motility disorder of the esophagus. The classical features are incomplete relaxation of a frequently hypertensive lower esophageal sphincter (LES) and a lack of peristalsis in the tubular esophagus. These motor abnormalities lead to dysphagia, stasis, regurgitation, weight loss, or secondary respiratory complications. Although major strides have been made in understanding the pathogenesis of this rare disorder, including a probable autoimmune mediated destruction of inhibitory neurons in response to an unknown insult in genetically susceptible individuals, a definite trigger has not been identified. The diagnosis of achalasia is suggested by clinical features and conf irmed by further diagnostic tests, such as esophagogastroduodenoscopy (EGD), manometry or barium swallow. These studies are not only used to exclude pseudoachalasia, but also might help to categorize the disease by severity or clinical subtype. Recent advances in diagnostic methods, including high resolution manometry (HRM), might allow prediction of treatment responses. The primary treatments for achieving long-term symptom relief are surgery and endoscopic methods. Although limited high-quality data exist, it appears that laparoscopic Heller myotomy with partial fundoplication is superior to endoscopic methods in achieving long-term relief of symptoms in the majority of patients. However, the current clinical approach to achalasia will depend not only on patients' characteristics and clinical subtypes of the disease, but also on local expertise and patient preferences.
基金The NSAF project supported by the NSFC and the Chinese Academy of Engineering Physics (10176032)
文摘In the current paper, we have primarily addressed one powerful simulation tool developed during the last decades-Large Eddy Simulation (LES), which is most suitable for unsteady three-dimensional complex turbulent flows in industry and natural environment. The main point in LES is that the large-scale motion is resolved while the small-scale motion is modeled or, in geophysical terminology, parameterized. With a view to devising a subgrid-scale(SGS) model of high quality, we have highlighted analyzing physical aspects in scale interaction and-energy transfer such as dissipation, backscatter, local and non-local interaction, anisotropy and resolution requirement. They are the factors responsible for where the advantages and disadvantages in existing SGS models come from. A case study on LES of turbulence in vegetative canopy is presented to illustrate that LES model is more based on physical arguments. Then, varieties of challenging complex turbulent flows in both industry and geophysical fields in the near future-are presented. In conclusion; we may say with confidence that new century shall see the flourish in the research of turbulence with the aid of LES combined with other approaches.
基金Project supported by the National Natural Science Foundation of China (Grant No :50179021) and the Youth Scienceand Technology Foundation of Sichuan (Grant No :05ZQ026-07) .
文摘The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is based on the Navier-Stokes equations and Large-Eddy Simulation (LES) model. The SIMPLE algorithm with the body fitted coordinate and tetrahedroid grid system is applied for the solution of the discretization governing equations.