Biphasic and multiphasic compounds have been well clarified to achieve extraordinary electrochemical properties as advanced energy storage materials.Yet the role of phase boundaries in improving the performance is rem...Biphasic and multiphasic compounds have been well clarified to achieve extraordinary electrochemical properties as advanced energy storage materials.Yet the role of phase boundaries in improving the performance is remained to be illustrated.Herein,we reported the biphasic vanadate,that is,Na_(1.2)V_(3)O_(8)/K_(2)V_(6)O_(16)·1.5H_(2)O(designated as Na0.5K0.5VO),and detected the novel interfacial adsorption-insertion mechanism induced by phase boundaries.Firstprinciples calculations indicated that large amount of Zn^(2+)and H^(+)ions would be absorbed by the phase boundaries and most of them would insert into the host structure,which not only promote the specific capacity,but also effectively reduce diffusion energy barrier toward faster reaction kinetics.Driven by this advanced interfacial adsorption-insertion mechanism,the aqueous Zn/Na_(0.5)K_(0.5)VO is able to perform excellent rate capability as well as long-term cycling performance.A stable capacity of 267 mA h g^(-1)after 800 cycles at 5 A g^(-1)can be achieved.The discovery of this mechanism is beneficial to understand the performance enhancement mechanism of biphasic and multiphasic compounds as well as pave pathway for the strategic design of highperformance energy storage materials.展开更多
The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithiu...The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithium-ion batteries(LIBs),as well as the alternative electrochemical energy storage technologies of sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)for their abundant alkali metal elements resources.Among various anode materials,such as graphite,organic compounds,metal oxides,and chalcogenides,iron sulfides have attracted substantial interests for their high theoretical capacity and low price.Specifically,as a common mineral that has been already applied as electrode for primary battery,ferrous disulfide(FeS_(2))has been regarded as one of the promising candidate anode materials and studied widely.Unfortunately,there are some inherent problems handicapping its practical application for alkali-ion batteries,including limited ionic/electrical conductivity,the formation of soluble polysulfides,and large volume change.In the last decade,massive efforts have been devoted to solving those problems.In this review,the various synthesis strategies,the effect of morphologies and particle sizes,the energy storage mechanisms,and the electrochemical performances of FeS_(2) as anode for alkaliion batteries(LIBs,SIBs,and PIBs)are summarized.Furthermore,the existing challenges and prospects of the development of FeS_(2)-based anode materials for alkali-ion batteries are presented at last.展开更多
The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these d...The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these devices,alkali metal ion batteries,such as lithium-ion batteries(LIBs) had attracted increasing research attention due to its several advantages including,environmental friendliness,high power density,long cycle life and excellent reversibility.It had been widely used in consumer electronics,electric vehicles,and large power grids et ac.Silicon-based(silicon and their oxides,carbides) anodes had been widely studied.Its several advantages including low cost,high theoretical capacity,natural abundance,and environmental friendliness,which shows great potential as anodes of LIBs.In this review,we summarized the recently progress in the synthetic method of silicon matrix composites.The empirical method for prelithiation of silicon-based materials were also provided.Further,we also reviewed some novel characterization methods.Finally,the new design,preparation methods and properties of these nano materials were reviewed and compared.We hoped that this review can provide a general overview of recent progress and we briefly highlighted the current challenges and prospects,and will clarify the future trend of silicon anode LIBs research.展开更多
A new analytical potential energy function for diatomic molecular ion XY+ is proposed based on the energy consistent method (ECM). The Coulomb potential included in the new ionic potential contains multipole correctio...A new analytical potential energy function for diatomic molecular ion XY+ is proposed based on the energy consistent method (ECM). The Coulomb potential included in the new ionic potential contains multipole corrections, converges quickly and is variationally, changeable. The new potential and the ECM are applied to variationally studying the potential energies of eight electronic states of several diatomic molecular ions: the A2π state of CO+, the X2∑ g + state of Li 2 + , the X2∑ g + state of He 2 + , the 12∏u state of Na 2 + , the A2∏u state of N 2 + , the X1∑+ state of KrH+, the X2∑+ state of SiO+ and the A2π state of SO+ ion. The present results agree excellently with the experiment-based Rydberg-Klein-Rees (RKR) potentials, and are superior to the commonly used Huxley-Murrell-Sorbie (HMS) analytical potentials, and are better in some cases than some quantum mechanicalab initio potentials in the ionic asymptotic and dissociation regions.展开更多
Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the com...Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the commercial lithium ion batteries.However,the disputed energy storage mechanism has been a confusing issue restraining the development of ZIBs.Although a lot of efforts have been dedicated to the exploration in battery chemistry,a comprehensive review that focuses on summarizing the energy storage mechanisms of ZIBs is needed.Herein,the energy storage mechanisms of aqueous rechargeable ZIBs are systematically reviewed in detail and summarized as four types,which are traditional Zn^(2+)insertion chemistry,dual ions co-insertion,chemical conversion reaction and coordination reaction of Zn^(2+)with organic cathodes.Furthermore,the promising exploration directions and rational prospects are also proposed in this review.展开更多
In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic an...In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic and safety,ZIBs can be considered as alternatives to lithium-ion batteries(LIBs).Vanadiumbased compounds with various structures and large layer spacings are considered as suitable cathode candidates for ZIBs.In this review,the recent research advances of vanadium-based electrode materials are systematically summarized.The electrode design strategy,electrochemical performances and energy storage mechanisms are emphasized.Finally,we point out the limitation of vanadium-based materials at present and the future prospect.展开更多
With the rising demand for fast-charging technology in electric vehicles and portable devices,significant efforts have been devoted to the development of the highrate batteries.Among numerous candidates,rechargeable a...With the rising demand for fast-charging technology in electric vehicles and portable devices,significant efforts have been devoted to the development of the highrate batteries.Among numerous candidates,rechargeable aqueous zinc-ion batteries(ZlBs)are a promising option due to its high theoretical capacity,low redox potential of zinc metal anode and inherent high ionic conductivity of aqueous electrolyte.As the strong electrostatic interaction between Zn^(2+)and host generally leads to sluggish electrode kinetics,many strategies have been proposed to enhance fast(dis)charging performance.Herein,we review the state-of-the-art ultrafast aqueous ZIBs and focus on the rational electrode-designing strategies,such as crystal structure engineering,nanostructuring and morphology controlling,conductive materials introducing and organic molecule designing.Recent research directions and future perspectives are also proposed in this review.展开更多
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-...In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.展开更多
Layered oxides of P2-type Nao.68Cuo.34Mno.6602, P2-type Nao.68Cuo.34Mno.50Tio.1602, and O'3-type NaCuo.67Sbo.3302 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The fir...Layered oxides of P2-type Nao.68Cuo.34Mno.6602, P2-type Nao.68Cuo.34Mno.50Tio.1602, and O'3-type NaCuo.67Sbo.3302 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The first two materials can deliver a capacity of around 70 mAh/g. The Cu2+ is oxidized to Cu3+ during charging, and the Cu3+ goes back to Cu2+ upon discharging. This is the first demonstration of the highly reversible change of the redox couple of Cu2+/Cu3+ with high storage potential in secondary batteries.展开更多
We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both ...We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both the triboelectric and electromagnetic induction effects. Under a vibration frequency of 14 Hz, the fabricated TENG can deliver an open-circuit voltage of about 84 V, a short-circuit current of 43 μA, and a maximum power of 1.2 mW (the corresponding power per unit mass and volume are 1.82 mW/g and 3.4 W/m^3, respectively) under a loading resistance of 2 MΩ, whereas the fabricated EMG can produce an opencircuit voltage of about 9.9 V, a short-circuit current of 7 mA, and a maximum power of 17.4 mW (the corresponding power per unit mass and volume are 0.53 mW/g and 3.7 W/m^3, respectively) under a loading resistance of 2 kΩ. Impedance matching between the TENG and EMG can be achieved using a transformer to decrease the impedance of the TENG. Moreover, the energy produced by the hybrid nanogenerator can be stored in a home-made Li-ion battery. This research represents important progress toward practical applications of vibration energy generation for realizing self-charging power cells.展开更多
Solid-state electrolytes have a lot of advantages, including the inhibition of alkali metal dendrite growth,the elimination of liquid electrolyte leakage, the improvement of safety, the enhancement of energy density a...Solid-state electrolytes have a lot of advantages, including the inhibition of alkali metal dendrite growth,the elimination of liquid electrolyte leakage, the improvement of safety, the enhancement of energy density and power density, and the potential application in flexible electronics. Therefore, solid-state electrolytes have become one of the hottest topics in energy-storage research area. An up-to-date review on solid-state electrolytes is of not only scientific significance but also technological imperative. Here,recent progress in solid-state electrolytes for alkali ion batteries is summarized. Through this comprehensive review and the comparison of different solid-state electrolytes, we hope it can give a clear figure of the state-of-art status and the development trend of the future solid-state electrolytes.展开更多
The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning m...The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning method is employed to synthesize one-dimensional(1 D) Fe_(2)TiO_(5) nanochains. The as-prepared Fe_(2)TiO_(5) nanochains exhibited superior specific capacity(500 mAh·g^(-1) at 0.10 A·g^(-1)),excellent rate performance(180 mAh·g^(-1) at 5.00 A·g^(-1)),and good cycling stability(retaining 100% of the initial specific capacity at a current density of 1.00 A·g^(-1) after1000 cycles). The as-assembled Fe_(2)TiO_(5)/SCCB lithiumion capacitor(LIC) also delivered a competitive energy density(137.8 Wh·kg^(-1))andpowerdensity(11,250 W·kg^(-1)). This study proves that the as-fabricated1 D Fe_(2)TiO_(5) nanochains are promising anode materials for high-performance LICs.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:51932011,51802356,51972346Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,Grant/Award Number:CSUZC202003+1 种基金Innovation-Driven Project of Central South University,Grant/Award Number:2020CX024Program of Youth Talent Support for Hunan Province,Grant/Award Number:2020RC3011。
文摘Biphasic and multiphasic compounds have been well clarified to achieve extraordinary electrochemical properties as advanced energy storage materials.Yet the role of phase boundaries in improving the performance is remained to be illustrated.Herein,we reported the biphasic vanadate,that is,Na_(1.2)V_(3)O_(8)/K_(2)V_(6)O_(16)·1.5H_(2)O(designated as Na0.5K0.5VO),and detected the novel interfacial adsorption-insertion mechanism induced by phase boundaries.Firstprinciples calculations indicated that large amount of Zn^(2+)and H^(+)ions would be absorbed by the phase boundaries and most of them would insert into the host structure,which not only promote the specific capacity,but also effectively reduce diffusion energy barrier toward faster reaction kinetics.Driven by this advanced interfacial adsorption-insertion mechanism,the aqueous Zn/Na_(0.5)K_(0.5)VO is able to perform excellent rate capability as well as long-term cycling performance.A stable capacity of 267 mA h g^(-1)after 800 cycles at 5 A g^(-1)can be achieved.The discovery of this mechanism is beneficial to understand the performance enhancement mechanism of biphasic and multiphasic compounds as well as pave pathway for the strategic design of highperformance energy storage materials.
基金the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithium-ion batteries(LIBs),as well as the alternative electrochemical energy storage technologies of sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)for their abundant alkali metal elements resources.Among various anode materials,such as graphite,organic compounds,metal oxides,and chalcogenides,iron sulfides have attracted substantial interests for their high theoretical capacity and low price.Specifically,as a common mineral that has been already applied as electrode for primary battery,ferrous disulfide(FeS_(2))has been regarded as one of the promising candidate anode materials and studied widely.Unfortunately,there are some inherent problems handicapping its practical application for alkali-ion batteries,including limited ionic/electrical conductivity,the formation of soluble polysulfides,and large volume change.In the last decade,massive efforts have been devoted to solving those problems.In this review,the various synthesis strategies,the effect of morphologies and particle sizes,the energy storage mechanisms,and the electrochemical performances of FeS_(2) as anode for alkaliion batteries(LIBs,SIBs,and PIBs)are summarized.Furthermore,the existing challenges and prospects of the development of FeS_(2)-based anode materials for alkali-ion batteries are presented at last.
基金financially supported by the International Science & Technology Cooperation Program of China under 2019YFE0100200the NSAF (Grant No. U1930113)+2 种基金the Beijing Natural Science Foundation (Grant No. L182022)the 13th Five-Year Plan of Advance Research and Sharing Techniques by the Equipment Department (41421040202)the SAST (2018-114).
文摘The ever-increasing environmental/energy crisis as well as the rapid upgrading of mobile devices had stimulated intensive research attention on promising alternative energy storage and conversion devices.Among these devices,alkali metal ion batteries,such as lithium-ion batteries(LIBs) had attracted increasing research attention due to its several advantages including,environmental friendliness,high power density,long cycle life and excellent reversibility.It had been widely used in consumer electronics,electric vehicles,and large power grids et ac.Silicon-based(silicon and their oxides,carbides) anodes had been widely studied.Its several advantages including low cost,high theoretical capacity,natural abundance,and environmental friendliness,which shows great potential as anodes of LIBs.In this review,we summarized the recently progress in the synthetic method of silicon matrix composites.The empirical method for prelithiation of silicon-based materials were also provided.Further,we also reviewed some novel characterization methods.Finally,the new design,preparation methods and properties of these nano materials were reviewed and compared.We hoped that this review can provide a general overview of recent progress and we briefly highlighted the current challenges and prospects,and will clarify the future trend of silicon anode LIBs research.
基金supported by the National Natural Science Foundation of China(Grant No.10074048)the Science Foundation of the Ministry of Education of China.
文摘A new analytical potential energy function for diatomic molecular ion XY+ is proposed based on the energy consistent method (ECM). The Coulomb potential included in the new ionic potential contains multipole corrections, converges quickly and is variationally, changeable. The new potential and the ECM are applied to variationally studying the potential energies of eight electronic states of several diatomic molecular ions: the A2π state of CO+, the X2∑ g + state of Li 2 + , the X2∑ g + state of He 2 + , the 12∏u state of Na 2 + , the A2∏u state of N 2 + , the X1∑+ state of KrH+, the X2∑+ state of SiO+ and the A2π state of SO+ ion. The present results agree excellently with the experiment-based Rydberg-Klein-Rees (RKR) potentials, and are superior to the commonly used Huxley-Murrell-Sorbie (HMS) analytical potentials, and are better in some cases than some quantum mechanicalab initio potentials in the ionic asymptotic and dissociation regions.
基金supported by the National Natural Science Foundation of China(21571080)。
文摘Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the commercial lithium ion batteries.However,the disputed energy storage mechanism has been a confusing issue restraining the development of ZIBs.Although a lot of efforts have been dedicated to the exploration in battery chemistry,a comprehensive review that focuses on summarizing the energy storage mechanisms of ZIBs is needed.Herein,the energy storage mechanisms of aqueous rechargeable ZIBs are systematically reviewed in detail and summarized as four types,which are traditional Zn^(2+)insertion chemistry,dual ions co-insertion,chemical conversion reaction and coordination reaction of Zn^(2+)with organic cathodes.Furthermore,the promising exploration directions and rational prospects are also proposed in this review.
基金supported by the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2019WNLOKF017)Education Department Funding of Liaoning province(LJGD2019001)Funding of Science and Technology Bureau,Shenyang City(No.RC190138)。
文摘In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic and safety,ZIBs can be considered as alternatives to lithium-ion batteries(LIBs).Vanadiumbased compounds with various structures and large layer spacings are considered as suitable cathode candidates for ZIBs.In this review,the recent research advances of vanadium-based electrode materials are systematically summarized.The electrode design strategy,electrochemical performances and energy storage mechanisms are emphasized.Finally,we point out the limitation of vanadium-based materials at present and the future prospect.
基金the Scientific Research Project of Beijing Municipal Education Commission(No.KM201911417004)the National Natural Science Foundation of China(Nos.51822201 and 51972292)。
文摘With the rising demand for fast-charging technology in electric vehicles and portable devices,significant efforts have been devoted to the development of the highrate batteries.Among numerous candidates,rechargeable aqueous zinc-ion batteries(ZlBs)are a promising option due to its high theoretical capacity,low redox potential of zinc metal anode and inherent high ionic conductivity of aqueous electrolyte.As the strong electrostatic interaction between Zn^(2+)and host generally leads to sluggish electrode kinetics,many strategies have been proposed to enhance fast(dis)charging performance.Herein,we review the state-of-the-art ultrafast aqueous ZIBs and focus on the rational electrode-designing strategies,such as crystal structure engineering,nanostructuring and morphology controlling,conductive materials introducing and organic molecule designing.Recent research directions and future perspectives are also proposed in this review.
文摘In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.51222210 and 11234013)the One Hundred Talent Project of the Chinese Academy of Sciences
文摘Layered oxides of P2-type Nao.68Cuo.34Mno.6602, P2-type Nao.68Cuo.34Mno.50Tio.1602, and O'3-type NaCuo.67Sbo.3302 were synthesized and evaluated as cathode materials for room-temperature sodium-ion batteries. The first two materials can deliver a capacity of around 70 mAh/g. The Cu2+ is oxidized to Cu3+ during charging, and the Cu3+ goes back to Cu2+ upon discharging. This is the first demonstration of the highly reversible change of the redox couple of Cu2+/Cu3+ with high storage potential in secondary batteries.
基金This work was supported by Beijing Natural Science Foundation (No. 2154059), National Natural Science Foundation of China (Nos. 51472055 and 61404034), and the "Thousands Talents" program for pioneer researcher and his innovation team, China.
文摘We report a hybrid nanogenerator that includes a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) for scavenging mechanical energy. This nanogenerator operates in a hybrid mode using both the triboelectric and electromagnetic induction effects. Under a vibration frequency of 14 Hz, the fabricated TENG can deliver an open-circuit voltage of about 84 V, a short-circuit current of 43 μA, and a maximum power of 1.2 mW (the corresponding power per unit mass and volume are 1.82 mW/g and 3.4 W/m^3, respectively) under a loading resistance of 2 MΩ, whereas the fabricated EMG can produce an opencircuit voltage of about 9.9 V, a short-circuit current of 7 mA, and a maximum power of 17.4 mW (the corresponding power per unit mass and volume are 0.53 mW/g and 3.7 W/m^3, respectively) under a loading resistance of 2 kΩ. Impedance matching between the TENG and EMG can be achieved using a transformer to decrease the impedance of the TENG. Moreover, the energy produced by the hybrid nanogenerator can be stored in a home-made Li-ion battery. This research represents important progress toward practical applications of vibration energy generation for realizing self-charging power cells.
基金supported by the National 1000-Talents Programthe National Natural Science Foundation of China (51203067, 51773071)+1 种基金Wuhan Science and Technology Bureau (2017010201010141)the Fundamental Research Funds for the Central Universities (HUST: 2017KFYXJJ023)
文摘Solid-state electrolytes have a lot of advantages, including the inhibition of alkali metal dendrite growth,the elimination of liquid electrolyte leakage, the improvement of safety, the enhancement of energy density and power density, and the potential application in flexible electronics. Therefore, solid-state electrolytes have become one of the hottest topics in energy-storage research area. An up-to-date review on solid-state electrolytes is of not only scientific significance but also technological imperative. Here,recent progress in solid-state electrolytes for alkali ion batteries is summarized. Through this comprehensive review and the comparison of different solid-state electrolytes, we hope it can give a clear figure of the state-of-art status and the development trend of the future solid-state electrolytes.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20170549)the National Natural Science Foundation of China(No.21706103)+1 种基金the China Postdoctoral Science Foundation(No.2019T120393)the Postdoctoral Science Foundation of Jiangsu Province(No.2019K295)。
文摘The unique crystal structure and multiple redox couples of iron titanate(Fe_(2)TiO_(5)) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning method is employed to synthesize one-dimensional(1 D) Fe_(2)TiO_(5) nanochains. The as-prepared Fe_(2)TiO_(5) nanochains exhibited superior specific capacity(500 mAh·g^(-1) at 0.10 A·g^(-1)),excellent rate performance(180 mAh·g^(-1) at 5.00 A·g^(-1)),and good cycling stability(retaining 100% of the initial specific capacity at a current density of 1.00 A·g^(-1) after1000 cycles). The as-assembled Fe_(2)TiO_(5)/SCCB lithiumion capacitor(LIC) also delivered a competitive energy density(137.8 Wh·kg^(-1))andpowerdensity(11,250 W·kg^(-1)). This study proves that the as-fabricated1 D Fe_(2)TiO_(5) nanochains are promising anode materials for high-performance LICs.