Forbush decreases are depressions in the galactic cosmic rays (GCRs) that are caused primarily by modulations of interplanetary coronal mass ejections (ICMEs) but also occasionally by stream/corotating interaction reg...Forbush decreases are depressions in the galactic cosmic rays (GCRs) that are caused primarily by modulations of interplanetary coronal mass ejections (ICMEs) but also occasionally by stream/corotating interaction regions (SIRs/CIRs). Forbush decreases have been studied extensively using neutron monitors at Earth;recently, for the first time, they have been measured on the surface of another planet, Mars, by the Radiation Assessment Detector (RAD) on board the Mars Science Laboratory’s (MSL) rover Curiosity. The modulation of GCR particles by heliospheric transients in space is energy-dependent;afterwards, these particles interact with the Martian atmosphere, the interaction process depending on particle type and energy. In order to use ground-measured Forbush decreases to study the space weather environment near Mars, it is important to understand and quantify the energy-dependent modulation of the GCR particles by not only the pass-by heliospheric disturbances but also by the Martian atmosphere. Accordingly, this study presents a model that quantifies both at the Martian surface and in the interplanetary space near Mars the amplitudes of Forbush decreases at Mars during the pass-by of an ICME/SIR by combining the heliospheric modulation of GCRs with the atmospheric modification of such modulated GCR spectra. The modeled results are in good agreement with measurements of Forbush decreases caused by ICMEs/SIRs based on data collected by MSL on the surface of Mars and by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in orbit. Our model and these findings support the validity of both the Forbush decrease description and Martian atmospheric transport models.展开更多
The chance of an Interplanetary Coronal Mass Ejection (ICME) observed by widely-separated spacecraft is rare. However, such an event provides us a good opportunity to study the propagation and evolution of ICMEs in th...The chance of an Interplanetary Coronal Mass Ejection (ICME) observed by widely-separated spacecraft is rare. However, such an event provides us a good opportunity to study the propagation and evolution of ICMEs in the heliosphere. On day 72 of 1975, an ICME was observed by Helios 1 at 0.3 AU, while a similar solar wind structure was observed by IMP 8 at Earth on day 70 of 1975. On the basis of comparison of the plasma signatures and the transit time from Helios 1 to IMP 8, we hypothesize the observed ICMEs by both spacecraft are resulted from the same active region on the solar surface. A one-dimensional MHD model was used to track the ICME from Helios 1 (0.3 AU) to Earth. The observed plasma profiles and timing are close to those predicted by our MHD model and thus, give the supports to the model.展开更多
The Martian hydrogen exosphere extends out of the bow shock, forming a "hydrogen corona". The solar wind interacts directly with the hydrogen corona. During an ICME event on 7 March 2015, the SWIA instrument...The Martian hydrogen exosphere extends out of the bow shock, forming a "hydrogen corona". The solar wind interacts directly with the hydrogen corona. During an ICME event on 7 March 2015, the SWIA instrument onboard Mars Atmosphere and Volatile Evolution mission (MAVEN) observed that the pick-up H+ fluxes in upstream solar wind were enhanced. Also increased were the penetrating H+ fluxes in the Martian atmosphere. Quantitatively, these penetrating H+ fluxes cannot increase by a factor of 5 simply due to a factor of 3 increase in the solar wind density, suggesting that the increased abundance of exospheric hydrogen upstream of the bow shock was a consequence of the passage of the ICME. A denser outer hydrogen corona at high altitudes suggests that the expansion of the neutral atmosphere was caused by the ICME. The excited and heated hydrogen exosphere probably indicates an elevated hydrogen escape rate during an ICME.展开更多
Integrated computational materials engineering (ICME) is an emerging discipline that can speed up product development by unifying material, design, fabrication, and computational power in a virtual environment. Develo...Integrated computational materials engineering (ICME) is an emerging discipline that can speed up product development by unifying material, design, fabrication, and computational power in a virtual environment. Developing and adapting ICME in industries is a grand challenge technically and culturally. To help develop a strategy for development of this new technology area, an ICME approach was proposed and implemented in optimizing thin welded structure design. The key component in this approach is a database which includes material properties, static strength, impact strength, and failure parameters for a weld. The heat source models, microstructure model, and thermo-mechanical model involved in ICME for welding simulation were discussed. The shell elements representing method for a fusion weld were introduced in details for a butt joint, lap joint, and a Tee joint. Using one or multiple solid elements representing a spot weld in a shell model was also discussed. Database building methods for resistance spot welding and fusion welding have been developed.展开更多
基金supported by the Strategic Priority Program of the Chinese Academy of Sciences (Grant No.XDB41000000 and XDA15017300)the Key Research Program of the Chinese Academy of Sciences (Grant No.XDPB11 and QYZDBSSW-DQC015)+3 种基金the CNSA pre-research Project on Civil Aerospace Technologies (Grant No.D020104)National Natural Science Foundation of China (Grant No.41842037)the German Aerospace Center (DLR) and DLR’s Space Administration grants 50QM0501, 50QM1201 and 50QM1701support by the Croatian Science Foundation under the project 7549 (MSOC) and EUH2020 grant agreement No 824135 (project SOLARNET)
文摘Forbush decreases are depressions in the galactic cosmic rays (GCRs) that are caused primarily by modulations of interplanetary coronal mass ejections (ICMEs) but also occasionally by stream/corotating interaction regions (SIRs/CIRs). Forbush decreases have been studied extensively using neutron monitors at Earth;recently, for the first time, they have been measured on the surface of another planet, Mars, by the Radiation Assessment Detector (RAD) on board the Mars Science Laboratory’s (MSL) rover Curiosity. The modulation of GCR particles by heliospheric transients in space is energy-dependent;afterwards, these particles interact with the Martian atmosphere, the interaction process depending on particle type and energy. In order to use ground-measured Forbush decreases to study the space weather environment near Mars, it is important to understand and quantify the energy-dependent modulation of the GCR particles by not only the pass-by heliospheric disturbances but also by the Martian atmosphere. Accordingly, this study presents a model that quantifies both at the Martian surface and in the interplanetary space near Mars the amplitudes of Forbush decreases at Mars during the pass-by of an ICME/SIR by combining the heliospheric modulation of GCRs with the atmospheric modification of such modulated GCR spectra. The modeled results are in good agreement with measurements of Forbush decreases caused by ICMEs/SIRs based on data collected by MSL on the surface of Mars and by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in orbit. Our model and these findings support the validity of both the Forbush decrease description and Martian atmospheric transport models.
基金Supported by the National Natural Science Foundation of China(40325010)
文摘The chance of an Interplanetary Coronal Mass Ejection (ICME) observed by widely-separated spacecraft is rare. However, such an event provides us a good opportunity to study the propagation and evolution of ICMEs in the heliosphere. On day 72 of 1975, an ICME was observed by Helios 1 at 0.3 AU, while a similar solar wind structure was observed by IMP 8 at Earth on day 70 of 1975. On the basis of comparison of the plasma signatures and the transit time from Helios 1 to IMP 8, we hypothesize the observed ICMEs by both spacecraft are resulted from the same active region on the solar surface. A one-dimensional MHD model was used to track the ICME from Helios 1 (0.3 AU) to Earth. The observed plasma profiles and timing are close to those predicted by our MHD model and thus, give the supports to the model.
基金funded by the Science and Technology Development Fund, Macao SAR (File no.0002/2019/A1)National Natural Science Foundation of China (NSFC) under grant 41731067supported by CNRS, CNES, Observatoire de Paris and Université Paul Sabatier, Toulouse
文摘The Martian hydrogen exosphere extends out of the bow shock, forming a "hydrogen corona". The solar wind interacts directly with the hydrogen corona. During an ICME event on 7 March 2015, the SWIA instrument onboard Mars Atmosphere and Volatile Evolution mission (MAVEN) observed that the pick-up H+ fluxes in upstream solar wind were enhanced. Also increased were the penetrating H+ fluxes in the Martian atmosphere. Quantitatively, these penetrating H+ fluxes cannot increase by a factor of 5 simply due to a factor of 3 increase in the solar wind density, suggesting that the increased abundance of exospheric hydrogen upstream of the bow shock was a consequence of the passage of the ICME. A denser outer hydrogen corona at high altitudes suggests that the expansion of the neutral atmosphere was caused by the ICME. The excited and heated hydrogen exosphere probably indicates an elevated hydrogen escape rate during an ICME.
文摘Integrated computational materials engineering (ICME) is an emerging discipline that can speed up product development by unifying material, design, fabrication, and computational power in a virtual environment. Developing and adapting ICME in industries is a grand challenge technically and culturally. To help develop a strategy for development of this new technology area, an ICME approach was proposed and implemented in optimizing thin welded structure design. The key component in this approach is a database which includes material properties, static strength, impact strength, and failure parameters for a weld. The heat source models, microstructure model, and thermo-mechanical model involved in ICME for welding simulation were discussed. The shell elements representing method for a fusion weld were introduced in details for a butt joint, lap joint, and a Tee joint. Using one or multiple solid elements representing a spot weld in a shell model was also discussed. Database building methods for resistance spot welding and fusion welding have been developed.