This paper addresses the problem of Hopf-flip bifurcation of high dimensional maps. Using the center manifold theorem, we obtain a three dimensional reduced map through the projection technique. The reduced map is fur...This paper addresses the problem of Hopf-flip bifurcation of high dimensional maps. Using the center manifold theorem, we obtain a three dimensional reduced map through the projection technique. The reduced map is further transformed into its normal form whose coefficients are determined by that of the original system. The dynamics of the map near the Hopf-flip bifurcation point is approximated by a so called “time-2τ^2 map” of a planar autonomous differential equation. It is shown that high dimensional maps may result in cycles of period two, tori T^1 (Hopf invariant circles), tori 2T^1 and tori 2T^2 depending both on how the critical eigenvalues pass the unit circle and on the signs of resonant terms' coefficients. A two-degree-of-freedom vibro-impact system is given as an example to show how the procedure of this paper works. It reveals that through Hopf-flip bifurcations, periodic motions may lead directly to different types of motion, such as subharmonic motions, quasi-periodic motions, motions on high dimensional tori and even to chaotic motions depending both on change in direction of the parameter vector and on the nonlinear terms of the first three orders.展开更多
A new procedure is developed to study the stochastic Hopf bifurcation in quasi- integrable-Hamiltonian systems under the Gaussian white noise excitation.Firstly,the singular bound- aries of the first-class and their a...A new procedure is developed to study the stochastic Hopf bifurcation in quasi- integrable-Hamiltonian systems under the Gaussian white noise excitation.Firstly,the singular bound- aries of the first-class and their asymptotic stable conditions in probability are given for the averaged Ito differential equations about all the sub-system's energy levels with respect to the stochastic aver- aging method.Secondly,the stochastic Hopf bifurcation for the coupled sub-systems are discussed by defining a suitable bounded torus region in the space of the energy levels and employing the theory of the torus region when the singular boundaries turn into the unstable ones.Lastly,a quasi-integrable- Hamiltonian system with two degrees of freedom is studied in detail to illustrate the above procedure. Moreover,simulations by the Monte-Carlo method are performed for the illustrative example to verify the proposed procedure.It is shown that the attenuation motions and the stochastic Hopf bifurcation of two oscillators and the stochastic Hopf bifurcation of a single oscillator may occur in the system for some system's parameters.Therefore,one can see that the numerical results are consistent with the theoretical predictions.展开更多
Bifurcation characteristics of the Langford system in a general form are systematically analysed, and nonlinear controls of periodic solutions changing into invariant tori in this system are achieved. Analytical relat...Bifurcation characteristics of the Langford system in a general form are systematically analysed, and nonlinear controls of periodic solutions changing into invariant tori in this system are achieved. Analytical relationship between control gain and bifurcation parameter is obtained. Bifurcation diagrams are drawn, showing the results of control for secondary Hopf bifurcation and sequences of bifurcations route to chaos. Numerical simulations of quasi-periodic tori validate analytic predictions.展开更多
基金The project supported by the Nutional Natural Science Foundation of China(10472096)
文摘This paper addresses the problem of Hopf-flip bifurcation of high dimensional maps. Using the center manifold theorem, we obtain a three dimensional reduced map through the projection technique. The reduced map is further transformed into its normal form whose coefficients are determined by that of the original system. The dynamics of the map near the Hopf-flip bifurcation point is approximated by a so called “time-2τ^2 map” of a planar autonomous differential equation. It is shown that high dimensional maps may result in cycles of period two, tori T^1 (Hopf invariant circles), tori 2T^1 and tori 2T^2 depending both on how the critical eigenvalues pass the unit circle and on the signs of resonant terms' coefficients. A two-degree-of-freedom vibro-impact system is given as an example to show how the procedure of this paper works. It reveals that through Hopf-flip bifurcations, periodic motions may lead directly to different types of motion, such as subharmonic motions, quasi-periodic motions, motions on high dimensional tori and even to chaotic motions depending both on change in direction of the parameter vector and on the nonlinear terms of the first three orders.
基金The project supported by the National Natural Science Foundation of China (10302025)
文摘A new procedure is developed to study the stochastic Hopf bifurcation in quasi- integrable-Hamiltonian systems under the Gaussian white noise excitation.Firstly,the singular bound- aries of the first-class and their asymptotic stable conditions in probability are given for the averaged Ito differential equations about all the sub-system's energy levels with respect to the stochastic aver- aging method.Secondly,the stochastic Hopf bifurcation for the coupled sub-systems are discussed by defining a suitable bounded torus region in the space of the energy levels and employing the theory of the torus region when the singular boundaries turn into the unstable ones.Lastly,a quasi-integrable- Hamiltonian system with two degrees of freedom is studied in detail to illustrate the above procedure. Moreover,simulations by the Monte-Carlo method are performed for the illustrative example to verify the proposed procedure.It is shown that the attenuation motions and the stochastic Hopf bifurcation of two oscillators and the stochastic Hopf bifurcation of a single oscillator may occur in the system for some system's parameters.Therefore,one can see that the numerical results are consistent with the theoretical predictions.
基金supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘Bifurcation characteristics of the Langford system in a general form are systematically analysed, and nonlinear controls of periodic solutions changing into invariant tori in this system are achieved. Analytical relationship between control gain and bifurcation parameter is obtained. Bifurcation diagrams are drawn, showing the results of control for secondary Hopf bifurcation and sequences of bifurcations route to chaos. Numerical simulations of quasi-periodic tori validate analytic predictions.