For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate...For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate/active materials/electrolyte interfaces. Herein by taking Li ion battery as example, we propose a semiconductor-electrochemistry model by which a general but novel insight has been gained into interfacial effect in batteries. Different from those traditional viewpoints, this derived model lies across from physics to electrochemistry. A reaction driving force can be expressed in terms of Fermi energy change,based on the tradeoff between electronic and ionic concentration at the reaction interfacial region. Therefore, at thermodynamic-controlled interface I of substrate/electrode, increasing contact areas can afford higher activity for active materials. Whereas at kinetically-governed interface II of electrode/electrolyte or inside active materials, it is crucial to guarantee high-reaction Li ionic concentration, with which some sufficient reaction degrees can reach.展开更多
Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen...Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen-Cooper-Schrieffer?equations (GBCSEs) for the gaps (Δs) and critical temperatures (Tcs) of both elemental and composite SCs. The μ-dependent interaction parameters consistent with the values of Δs and Tcs of any of these SCs were shown to lead to expressions for the effective mass of electrons (m*) and their number density (ns), critical velocity (v0), and the critical current density j0 at T = 0 in terms of the following five parameters: Debye temperature, EF, a dimensionless construct y, the specific heat constant, and the gram-atomic volume. We could then fix the value of μ in any SC by appealing to the experimental value of its j0 and calculate the other parameters. This approach was followed for a variety of SCs—elemental, MgB2 and cuprates and, with a more accurate equation to determine y, for Nitrogen Nitride (NbN). Employing the framework given for NbN, we present here a detailed study of Ba0.6K0.4Fe2As2 (BaAs). Some of the main attributes of this SC are: it is characterized by?-wave superconductivity and multiple gaps between 0?-?12 meV;its Tc ~?37 K, but the maximum Tc of SCs in its class can exceed 50 K;EF/kTc = 4.4 (k = Boltzmann constant), and its Tc plotted against a tuning variable has a dome-like structure. After drawing attention to the fact that the?-wave is an inbuilt feature of GBCSEs, we give a quantitative account of its several other features, which include the values of m*, ns, vo, and?coherence length. Finally, we also deal with the issue of the stage BaAs occupies in the BCS-Bose-Einstein Condensation crossover.展开更多
Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency ha...Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency have been obtained by means of a Bessel function. A simple and analytical formula for Fermi energy has been derived with the help of the Gauss integration method. The results of the proposed formulas are in good agreement with accurate numerical solutions. The formulas have been successfully used in the calculation of carrier density and Fermi energy in a miniband superlattice system. Their accuracy is in the order of 10-5.展开更多
Recasting the BCS theory in the larger framework of the Bethe-Salpeter equation, a new equation is derived for the temperature-dependent critical current density jc(T) of an elemental superconductor (SC) directly in t...Recasting the BCS theory in the larger framework of the Bethe-Salpeter equation, a new equation is derived for the temperature-dependent critical current density jc(T) of an elemental superconductor (SC) directly in terms of the basic parameters of the theory, namely the dimensionless coupling constant [N(0)V], the Debye temperature θD and, additionally, the Fermi energy EF—unlike earlier such equations based on diverse, indirect criteria. Our approach provides an ab initio theoretical justification for one of the latter, text book equations invoked at T = 0 which involves Fermi momentum;additionally, it relates jc with the relevant parameters of the problem at T ≠ 0. Noting that the numerical value of EF of a high-Tc SC is a necessary input for the construction of its Fermi surface—which sheds light on its gap-structure, we also briefly discuss extension of our approach for such SCs.展开更多
The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculat...The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculated for n=1, m=5.The total density of states (TDOS) for bulk CdSe, ZnSe and n=1, 3, m=1, 3, 5, for SLS were investigated.Fermi energy, the band gap, the valence of an atom, and the ionization potential and the electron affinity were discassed.展开更多
A series of Cu-Zn mixed ferrites with composition formula Cu1–xZnxFe2O4 is prepared by the double sintering ceramic technique. Thermoelectric power studies are performed over a temperature range of 300 to 800 k by a ...A series of Cu-Zn mixed ferrites with composition formula Cu1–xZnxFe2O4 is prepared by the double sintering ceramic technique. Thermoelectric power studies are performed over a temperature range of 300 to 800 k by a deferential method. The results showed a negative value for the Seebeck coefficient S for all samples, and all compositions exhibited an n-type semiconductors behavior in the measured range of temperature. The values of charge carrier concentration n and the Fermi energy were determined. The values of n were found to decrease as temperature increased, while Fermi energy directed to more negative values when Zn content is increased. On the basis of these results a mechanism for the conduction in Cu-Zn ferrites is suggested and the properties of the mention compounds were determined.展开更多
It is well known that the critical current density of a superconductor depends on its size, shape, nature of doping and the manner of preparation. It is suggested here that the collective effect of such differences fo...It is well known that the critical current density of a superconductor depends on its size, shape, nature of doping and the manner of preparation. It is suggested here that the collective effect of such differences for different samples of the same superconductor is to endow them with different values of the Fermi energy—a single property to which may be attributed the observed variation in their critical current densities. The study reported here extends our earlier work concerned with the generalized BCS equations [Malik, G.P. (2010) Physica B, 405, 3475-3481;Malik, G.P. (2013) WJCMP, 3,103-110]. We develop here for the first time a framework of microscopic equations that incorporates all of the following parameters of a superconductor: temperature, momentum of Cooper pairs, Fermi energy, applied magnetic field and critical current density. As an application of this framework, we address the different values of critical current densities of Bi-2212 for non-zero values of temperature and applied magnetic field that have been reported in the literature.展开更多
Co thin films were subjected to 50 keV carbon ion implantation.At the dose of 2.5× 10^(17)/cm^2,a hexagonal Co-carbide phase was observed for the first time.The lattice con- stants from electron diffraction are a...Co thin films were subjected to 50 keV carbon ion implantation.At the dose of 2.5× 10^(17)/cm^2,a hexagonal Co-carbide phase was observed for the first time.The lattice con- stants from electron diffraction are a=0.2685 nm and c=0.4335 nm.The phase does not dis- appear until the dose of 9×10^(17)/cm^2.Auger spectra showed that the stoichiometry was Co_(2-3)C.The behavior of the ferromagnetic carbides along the descending sequence of Ni-Fe-Co by Fermi energy of solids was interpreted.Furthermore,based on the kinetic con- dition of phase transformation and the band theory of solids,a possible explanation about the difference of the results of ion-metallurgy and thermal metallurgy was proposed.展开更多
This study uses a parabolic equation to fit the Inverse Compton (IC) spectral component of 3743 blazars (794 FSRQs,1432 BLLacs,and 1517 BCUs) from the 4FGL-DR3 catalog.Some mutual correlations are investigated,and a B...This study uses a parabolic equation to fit the Inverse Compton (IC) spectral component of 3743 blazars (794 FSRQs,1432 BLLacs,and 1517 BCUs) from the 4FGL-DR3 catalog.Some mutual correlations are investigated,and a Bayesian classification is performed to the IC peak frequencies.Our analyses draw the following conclusions:(1) The Bayesian classification shows two components with a dividing boundary of log(v_(p)^(IC)/Hz)pIC=22.9.Therefore,the 3743 blazars are divided into low IC peak frequency(LCP) blazars and high IC peak frequency (HCP) blazars.(2) A strong linear correlation exists between IC peak frequency(logv_(p)^(IC)) and γ-ray photon spectral index (Γ).The IC peak frequency can be estimated by an empirical relation logv_(p)^(IC)=–4.5·Γ+32.8 for BL Lacs and logv_(p)^(IC)=4.0+31.4pICfor FSRQs,which is consistent with the result by Abdo et al.(3) The ICspectral curvature and IC peak frequency are not as closely related as the synchrotron curvature and the synchrotron peak frequency.(4) An anti-correlation exists between IC peak frequency and IC peak luminosity,implying that as the IC peak frequency in the γ-ray band decreases,the source becomes more luminous.The beaming effect is stronger for the source with a lower IC peak frequency.(5) Positive correlations exist between IC and synchrotron components for both peak frequencies and peak fluxes,but no clear correlation exists between IC curvature and synchrotron curvature.展开更多
基金the National Natural Science Foundation of China(51872115)Program for the Development of Science and Technology of Jilin Province(20190201309JC)+5 种基金the Fundamental Research Funds for the Central Universities(Grant no.531107051230)The Open Project Program of Wuhan National Laboratory for Optoelectronicsthe Jilin Province/Jilin University co-Construction Project-Funds for New Materials(SXGJSF2017-3,Branch-2/440050316A36)Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universities,JLU“Double-First Class”Discipline for Materials Science&Engineering。
文摘For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate/active materials/electrolyte interfaces. Herein by taking Li ion battery as example, we propose a semiconductor-electrochemistry model by which a general but novel insight has been gained into interfacial effect in batteries. Different from those traditional viewpoints, this derived model lies across from physics to electrochemistry. A reaction driving force can be expressed in terms of Fermi energy change,based on the tradeoff between electronic and ionic concentration at the reaction interfacial region. Therefore, at thermodynamic-controlled interface I of substrate/electrode, increasing contact areas can afford higher activity for active materials. Whereas at kinetically-governed interface II of electrode/electrolyte or inside active materials, it is crucial to guarantee high-reaction Li ionic concentration, with which some sufficient reaction degrees can reach.
文摘Guided by the belief that Fermi energy EF (equivalently, chemical potential μ) plays a pivotal?role in determining the properties of superconductors (SCs), we have recently derived μ-incorporated Generalized-Bardeen-Cooper-Schrieffer?equations (GBCSEs) for the gaps (Δs) and critical temperatures (Tcs) of both elemental and composite SCs. The μ-dependent interaction parameters consistent with the values of Δs and Tcs of any of these SCs were shown to lead to expressions for the effective mass of electrons (m*) and their number density (ns), critical velocity (v0), and the critical current density j0 at T = 0 in terms of the following five parameters: Debye temperature, EF, a dimensionless construct y, the specific heat constant, and the gram-atomic volume. We could then fix the value of μ in any SC by appealing to the experimental value of its j0 and calculate the other parameters. This approach was followed for a variety of SCs—elemental, MgB2 and cuprates and, with a more accurate equation to determine y, for Nitrogen Nitride (NbN). Employing the framework given for NbN, we present here a detailed study of Ba0.6K0.4Fe2As2 (BaAs). Some of the main attributes of this SC are: it is characterized by?-wave superconductivity and multiple gaps between 0?-?12 meV;its Tc ~?37 K, but the maximum Tc of SCs in its class can exceed 50 K;EF/kTc = 4.4 (k = Boltzmann constant), and its Tc plotted against a tuning variable has a dome-like structure. After drawing attention to the fact that the?-wave is an inbuilt feature of GBCSEs, we give a quantitative account of its several other features, which include the values of m*, ns, vo, and?coherence length. Finally, we also deal with the issue of the stage BaAs occupies in the BCS-Bose-Einstein Condensation crossover.
文摘Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency have been obtained by means of a Bessel function. A simple and analytical formula for Fermi energy has been derived with the help of the Gauss integration method. The results of the proposed formulas are in good agreement with accurate numerical solutions. The formulas have been successfully used in the calculation of carrier density and Fermi energy in a miniband superlattice system. Their accuracy is in the order of 10-5.
文摘Recasting the BCS theory in the larger framework of the Bethe-Salpeter equation, a new equation is derived for the temperature-dependent critical current density jc(T) of an elemental superconductor (SC) directly in terms of the basic parameters of the theory, namely the dimensionless coupling constant [N(0)V], the Debye temperature θD and, additionally, the Fermi energy EF—unlike earlier such equations based on diverse, indirect criteria. Our approach provides an ab initio theoretical justification for one of the latter, text book equations invoked at T = 0 which involves Fermi momentum;additionally, it relates jc with the relevant parameters of the problem at T ≠ 0. Noting that the numerical value of EF of a high-Tc SC is a necessary input for the construction of its Fermi surface—which sheds light on its gap-structure, we also briefly discuss extension of our approach for such SCs.
文摘The electronic structures of (CdSe)n/(ZnSe)m strained-lager soperfattice (SLS) were investigated by the recursion method in the tight-bindiop opproximation. The total,local, and partial density of states were calculated for n=1, m=5.The total density of states (TDOS) for bulk CdSe, ZnSe and n=1, 3, m=1, 3, 5, for SLS were investigated.Fermi energy, the band gap, the valence of an atom, and the ionization potential and the electron affinity were discassed.
文摘A series of Cu-Zn mixed ferrites with composition formula Cu1–xZnxFe2O4 is prepared by the double sintering ceramic technique. Thermoelectric power studies are performed over a temperature range of 300 to 800 k by a deferential method. The results showed a negative value for the Seebeck coefficient S for all samples, and all compositions exhibited an n-type semiconductors behavior in the measured range of temperature. The values of charge carrier concentration n and the Fermi energy were determined. The values of n were found to decrease as temperature increased, while Fermi energy directed to more negative values when Zn content is increased. On the basis of these results a mechanism for the conduction in Cu-Zn ferrites is suggested and the properties of the mention compounds were determined.
文摘It is well known that the critical current density of a superconductor depends on its size, shape, nature of doping and the manner of preparation. It is suggested here that the collective effect of such differences for different samples of the same superconductor is to endow them with different values of the Fermi energy—a single property to which may be attributed the observed variation in their critical current densities. The study reported here extends our earlier work concerned with the generalized BCS equations [Malik, G.P. (2010) Physica B, 405, 3475-3481;Malik, G.P. (2013) WJCMP, 3,103-110]. We develop here for the first time a framework of microscopic equations that incorporates all of the following parameters of a superconductor: temperature, momentum of Cooper pairs, Fermi energy, applied magnetic field and critical current density. As an application of this framework, we address the different values of critical current densities of Bi-2212 for non-zero values of temperature and applied magnetic field that have been reported in the literature.
文摘Co thin films were subjected to 50 keV carbon ion implantation.At the dose of 2.5× 10^(17)/cm^2,a hexagonal Co-carbide phase was observed for the first time.The lattice con- stants from electron diffraction are a=0.2685 nm and c=0.4335 nm.The phase does not dis- appear until the dose of 9×10^(17)/cm^2.Auger spectra showed that the stoichiometry was Co_(2-3)C.The behavior of the ferromagnetic carbides along the descending sequence of Ni-Fe-Co by Fermi energy of solids was interpreted.Furthermore,based on the kinetic con- dition of phase transformation and the band theory of solids,a possible explanation about the difference of the results of ion-metallurgy and thermal metallurgy was proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2031112,U2031201,and 11733001)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2019B030302001)+3 种基金the Research Fund of Hunan Education Department(Grant No.20C1273)the Science Research Grants from the China Manned Space Project(Grant No.CMS-CSST-2021-A06)the support from Astrophysics Key Subjects of Guangdong Province and Guangzhou Citysupported by the Guangzhou University(Grant No.YM2020001)。
文摘This study uses a parabolic equation to fit the Inverse Compton (IC) spectral component of 3743 blazars (794 FSRQs,1432 BLLacs,and 1517 BCUs) from the 4FGL-DR3 catalog.Some mutual correlations are investigated,and a Bayesian classification is performed to the IC peak frequencies.Our analyses draw the following conclusions:(1) The Bayesian classification shows two components with a dividing boundary of log(v_(p)^(IC)/Hz)pIC=22.9.Therefore,the 3743 blazars are divided into low IC peak frequency(LCP) blazars and high IC peak frequency (HCP) blazars.(2) A strong linear correlation exists between IC peak frequency(logv_(p)^(IC)) and γ-ray photon spectral index (Γ).The IC peak frequency can be estimated by an empirical relation logv_(p)^(IC)=–4.5·Γ+32.8 for BL Lacs and logv_(p)^(IC)=4.0+31.4pICfor FSRQs,which is consistent with the result by Abdo et al.(3) The ICspectral curvature and IC peak frequency are not as closely related as the synchrotron curvature and the synchrotron peak frequency.(4) An anti-correlation exists between IC peak frequency and IC peak luminosity,implying that as the IC peak frequency in the γ-ray band decreases,the source becomes more luminous.The beaming effect is stronger for the source with a lower IC peak frequency.(5) Positive correlations exist between IC and synchrotron components for both peak frequencies and peak fluxes,but no clear correlation exists between IC curvature and synchrotron curvature.