We consider a variation of a classical Turán-type extremal problem as follows: Determine the smallest even integer σ(Kr,r,n) such that every n-term graphic sequence π = (d1,d2,...,dn) with term sum σ(π) = d1 ...We consider a variation of a classical Turán-type extremal problem as follows: Determine the smallest even integer σ(Kr,r,n) such that every n-term graphic sequence π = (d1,d2,...,dn) with term sum σ(π) = d1 + d2 + ... + dn ≥ σ(Kr,r,n) is potentially Kr,r-graphic, where Kr,r is an r × r complete bipartite graph, i.e. π has a realization G containing Kr,r as its subgraph. In this paper, the values σ(Kr,r,n) for even r and n ≥ 4r2 - r - 6 and for odd r and n ≥ 4r2 + 3r - 8 are determined.展开更多
Let a(Kr,+1 - K3,n) be the smallest even integer such that each n-term graphic sequence п= (d1,d2,…dn) with term sum σ(п) = d1 + d2 +…+ dn 〉 σ(Kr+1 -K3,n) has a realization containing Kr+1 - K3 as...Let a(Kr,+1 - K3,n) be the smallest even integer such that each n-term graphic sequence п= (d1,d2,…dn) with term sum σ(п) = d1 + d2 +…+ dn 〉 σ(Kr+1 -K3,n) has a realization containing Kr+1 - K3 as a subgraph, where Kr+1 -K3 is a graph obtained from a complete graph Kr+1 by deleting three edges which form a triangle. In this paper, we determine the value σ(Kr+1 - K3,n) for r ≥ 3 and n ≥ 3r+ 5.展开更多
Gould R J等人考虑了下述经典Turan型极值问题的变形:对于给定的图H,确定最小的正偶数σ(H,n),使得对于每一个n项正可图序列π=(d1,d2,…,dn),当σ(π)=d1+d2+…+dn≥σ(H,n)时,π有一个实现G以H作为子图.本文完全确定了σ(K1,1,3,n)之...Gould R J等人考虑了下述经典Turan型极值问题的变形:对于给定的图H,确定最小的正偶数σ(H,n),使得对于每一个n项正可图序列π=(d1,d2,…,dn),当σ(π)=d1+d2+…+dn≥σ(H,n)时,π有一个实现G以H作为子图.本文完全确定了σ(K1,1,3,n)之值,其中Kr,s,t是r×s×t完全三部图.展开更多
Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph The...Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph Theory, 1991, 439-449) conjectured that σ(k, n) = (k - 1)(2n- k) + 2. Li et al. (Science in China, 1998, 510-520) proved that the conjecture is true for k 〉 5 and n ≥ (k2) + 3, and raised the problem of determining the smallest integer N(k) such that the conjecture holds for n ≥ N(k). They also determined the values of N(k) for 2 ≤ k ≤ 7, and proved that [5k-1/2] ≤ N(k) ≤ (k2) + 3 for k ≥ 8. In this paper, we determine the exact values of σ(k, n) for n ≥ 2k+3 and k ≥ 6. Therefore, the problem of determining σ(k, n) is completely solved. In addition, we prove as a corollary that N(k) -= [5k-1/2] for k ≥6.展开更多
The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a g...The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a graph (digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and only if v is an eccentric vertex of u in G. In this paper, we have considered an open problem. Partly we have characterized graphs with specified maximum degree such that ED(G) = G.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No.19971086).
文摘We consider a variation of a classical Turán-type extremal problem as follows: Determine the smallest even integer σ(Kr,r,n) such that every n-term graphic sequence π = (d1,d2,...,dn) with term sum σ(π) = d1 + d2 + ... + dn ≥ σ(Kr,r,n) is potentially Kr,r-graphic, where Kr,r is an r × r complete bipartite graph, i.e. π has a realization G containing Kr,r as its subgraph. In this paper, the values σ(Kr,r,n) for even r and n ≥ 4r2 - r - 6 and for odd r and n ≥ 4r2 + 3r - 8 are determined.
基金Supported by the National Natural Science Foundation of China (No.10401010).
文摘Let a(Kr,+1 - K3,n) be the smallest even integer such that each n-term graphic sequence п= (d1,d2,…dn) with term sum σ(п) = d1 + d2 +…+ dn 〉 σ(Kr+1 -K3,n) has a realization containing Kr+1 - K3 as a subgraph, where Kr+1 -K3 is a graph obtained from a complete graph Kr+1 by deleting three edges which form a triangle. In this paper, we determine the value σ(Kr+1 - K3,n) for r ≥ 3 and n ≥ 3r+ 5.
文摘Gould R J等人考虑了下述经典Turan型极值问题的变形:对于给定的图H,确定最小的正偶数σ(H,n),使得对于每一个n项正可图序列π=(d1,d2,…,dn),当σ(π)=d1+d2+…+dn≥σ(H,n)时,π有一个实现G以H作为子图.本文完全确定了σ(K1,1,3,n)之值,其中Kr,s,t是r×s×t完全三部图.
基金National Natural Science Foundation of China(No.10401010)
文摘Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph Theory, 1991, 439-449) conjectured that σ(k, n) = (k - 1)(2n- k) + 2. Li et al. (Science in China, 1998, 510-520) proved that the conjecture is true for k 〉 5 and n ≥ (k2) + 3, and raised the problem of determining the smallest integer N(k) such that the conjecture holds for n ≥ N(k). They also determined the values of N(k) for 2 ≤ k ≤ 7, and proved that [5k-1/2] ≤ N(k) ≤ (k2) + 3 for k ≥ 8. In this paper, we determine the exact values of σ(k, n) for n ≥ 2k+3 and k ≥ 6. Therefore, the problem of determining σ(k, n) is completely solved. In addition, we prove as a corollary that N(k) -= [5k-1/2] for k ≥6.
文摘The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a graph (digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and only if v is an eccentric vertex of u in G. In this paper, we have considered an open problem. Partly we have characterized graphs with specified maximum degree such that ED(G) = G.