The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with em...The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermedi- ate-mafic intrusive and volcanic rocks throughout the Dabie-Sulu orogenic belt. Despite the different ages for their emplacement, the Mesozoic magmatic rocks are all characterized not only by enrichment of LREE and LILE but depletion of HFSE, but also by high initial Sr isotope ratios, low εNd(t) values and low radiogeneic Pb isotope compositions. Some zircons from the Jurassic and Cretaceous granitoids contain inherited magmatic cores with Neoprotozoic and Triassic U-Pb ages. Most of the Cretaceous mafic rocks have zircon δ18O values and whole-rock δ13C values lower than those for the normal mantle. A systematic comparison with adjacent UHP metaigneous rocks shows that the Mesozoic granitoids and mafic rocks have elemental and isotopic features similar to the UHP metagranite and metabasite, respectively. This indicates that these magmatic and metamorphic rocks share the diagnostic features of lithospheric source that has tectonic affinity to the northern edge of the South China Block. Their precursors underwent the UHP metamorphism and the post-collisional anatexis, respectively at different times and depths. Therefore, the Mesozoic magmatic rocks were derived from anatexis of the subducted continental lithosphere itself beneath the collision-thickened orogen; the geodynamic mechanism of the post-collisional magmatisms is tectonic collapse of orogenic roots in response to lithospheric extension.展开更多
Micro-diamonds were only found ten years ago in eclogite associated with marble at Xindian in the Dabie Mountains. This paper reports our new finding of micro-diamonds not only in eclogites at Maobei in the Sulu regio...Micro-diamonds were only found ten years ago in eclogite associated with marble at Xindian in the Dabie Mountains. This paper reports our new finding of micro-diamonds not only in eclogites at Maobei in the Sulu region and at Xindian and Laoyoufang in the south part of the Dabie Mountains (South Dabie), but also in eclogites at Baizhangya and Huangweihe in the northern part of the Dabie Mountains (North Dabie) that has usually been considered not to experience ultrahigh pressure metamorphism. Except the micro-diamond at Huangweihe that was found from the artificial heavy sands of zircons used for isotopic dating, the micro-diamonds from other localities were identified in thin sections of the eclogites. Besides a few interstitial grains, most of the micro-diamond grains in thin sections occur as inclusion in garnet. Three crystals of micro- diamond at Maobei in the Sulu region are sized in 120, 60 and 30 mm, respectively. Crystal forms look like octahedron and the composite of octahedron and hexahedron. The largest micro-diamond crystal comes from Xindian, which is measured to be 180 mm in diameter with distinct zonal structure and inclusions. The zonal structure occurs as an inclined octahedron inside rounded by an incomplete hexagonal girdle. A smaller micro-diamond inclusion occurs inside the central octahedron, and a larger graphite inclusion is within the outer zone. The Laoyoufang micro-diamond is partially retrograded to graphite. Micro-diamond from the Baizhangya eclogite in the ultramafic rock belt of North Dabie is an aggregate of 70 mm×90 mm in size. All the micro-diamonds are confirmed by the Raman spectrum analysis. The occurrence of the micro-diamonds from the eclogites in the ultramafic rock belt of North Dabie demonstrates that this region was also subjected to ultrahigh pressure metamorphism as well as the South Dabie did.展开更多
Although tectonic models were presented for exhumation of ultrahigh-pressure (UHP) metamorphic rocks during the continental collision, there is increasing evidence for the decoupling between crustal slices at various ...Although tectonic models were presented for exhumation of ultrahigh-pressure (UHP) metamorphic rocks during the continental collision, there is increasing evidence for the decoupling between crustal slices at various depths within deeply subducted continental crust. This lends support to the multi-slice successive exhumation model of the UHP metamorphic rocks in the Dabie-Sulu orogen. The available evidence is summarized as follows: (1) the low-grade metamorphic slices, which have geotectonic affinity to the South China Block and part of them records the Triassic metamorphism, occur in the northern margin of the Dabie-Sulu UHP metamorphic zone, suggesting decoupling of the upper crust from the underlying basement during the initial stages of continental subduction; (2) the Dabie and Sulu HP to UHP metamorphic zones comprise several HP to UHP slices, which have an increased trend of metamorphic grade from south to north but a decreased trend of peak metamorphic ages correspondingly; and (3) the Chinese Continental Science Drilling (CCSD) project at Donghai in the Sulu orogen reveals that the UHP metamorphic zone is composed of several stacked slices, which display distinctive high and low radiogenic Pb from upper to lower parts in the profile, suggesting that these UHP crustal slices were derived from the subducted upper and middle crusts, respectively. Detachment surfaces within the deeply subducted crust may occur either along an ancient fault as a channel of fluid flow, which resulted in weakening of mechanic strength of the rocks adjacent to the fault due to fluid-rock interaction, or along the low-viscosity zones which resulted from variations of geotherms and lithospheric compositions at different depths. The multi-slice successive exhumation model is different from the traditional exhumation model of the UHP metamorphic rocks in that the latter assumes the detachment of the entire subducted continental crust from the underlying mantle lithosphere and its subsequent exhumation as a whole. This also reveals t展开更多
The consistence between the first rapid cooling time (226-219 Ma) of the untrahigh pressure metamorphic (UHPM) rocks in the Dabie Mountains and the formation time (205-220 Ma) of the syncollisional granites in the Qin...The consistence between the first rapid cooling time (226-219 Ma) of the untrahigh pressure metamorphic (UHPM) rocks in the Dabie Mountains and the formation time (205-220 Ma) of the syncollisional granites in the Qinling and Sulu areas suggests that the first rapid cooling and uplift of the UHPM rocks may be related to breakoff of subducted plate. Therefore the second rapid cooling and uplift (180-170 Ma) of the UHPM racks needs a post-colli-sional lithosphere delamination which resulted in the granitic magmatism with an age of about 170 Ma. In addition, the rapid rising of the Dabie dome in the early Cretaceous (130-110 Ma) and the corresponding large-scale magmatism in the Dabie Mountains need another litho-sphere delamination. The geochronology of the post-collis-ional mafic-ultramafic intrusions and geological relationship between the mafic-ultramafic intrusions and granites suggest that partial melting was initiated in the mantle, and then progressively developed in the crust, suggesting a mantle展开更多
Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphi...Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃ and P =1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite eclogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃ and P 〉 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600- 710℃ and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245 ± 4 Ma for domain 1, 235 ± 3 Ma for domain 2 and 215± 6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244 ± 4 Ma, 233 ± 4 Ma and 214 ± 5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from - 55 km to 〉 160 km deep mantle depth took place 展开更多
The Qinling-Dabie-Sulu high-pressure and ultra-high pressure metamorphic belt wasformed by subduction and collision between the North China and Yangtze plates. The study ofthe eclogite belt is very important in unders...The Qinling-Dabie-Sulu high-pressure and ultra-high pressure metamorphic belt wasformed by subduction and collision between the North China and Yangtze plates. The study ofthe eclogite belt is very important in understanding the evolution of the Qinling Dabie orogen. Inthe present paper the geology, petrology, minerology and chronology of the eclogites in the Dabieand Sulu areas are described. The principal conclusions of this work are as follows: (1) Based up-on the field occurrence and the P-T conditions of the eclogites, two types of eclogite can be dis-tinguished: Type 1—the low-temperature and high-pressure eclogite in the mid-late Proterozoicmetamorphic series, and Type 2—the ultra-high pressure eclogite in the late Archaean to earlyProterozoic metamorphic complex. In the Dabie area, the ultra-high-pressure eclogite,high-pressure eclogite and epidote-blueschist units are nearly parallel to each other and stretchintermittently from north to south. (2) The P-T conditions of the high-pressure eclogites and ul-tra-high pressure eclogites have been estimated. The former are formed at 450-550℃ and1.4-1.6 GPa; while the latter at 650-870℃ and >2.7-2.9 GPa in the Dabie area and at820-1000℃ and >2.8-3.1 GPa in the Sulu area. The metamorphic temperatures of the eclogitesincrease progressively from west to east. (3) The ultra-high pressure eclogites were subjected to 5stages of metamorphism: pre-eclogite epidote amphibolite facies, peak coesite eclogite facies,post-eclogite amphibolite facies, epidote-blueschist facies or epidote amphibolite facies andgreenschist facies. The general features of the PTt path of the ultra-high pressure eclogite are:clockwise pattern, progressive metamorphism being a process of slow increasing temperature andrapid increasing pressure, and the retrogressive section with nearly isothermal decompression atthe early stage, isobaric cooling at the middle stage and nearly isothermal decompression at thelate stage. (4) At least two stages of high-pressure metamorphism occurred in the 展开更多
The present-day observable tectonic framework of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts in the Dabie-Sulu region was dominantly formed by an extensional process, mostly between 200 and 1...The present-day observable tectonic framework of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts in the Dabie-Sulu region was dominantly formed by an extensional process, mostly between 200 and 170 Ma, following the Triassic collision between the Sino-Korean and Yangtze cratons. The framework that controls the present spatial distribution of UHP and HP metamorphic rocks in particular displays the typical features of a Cordilleran-type metamorphic core complex, in which at least four regional-scale, shallow-dipping detachment zones are recognized. Each of these detachment zones corresponds to a pressure gap of 0.5 to 2.0 GPa. The detachment zones separate the rocks exposed in the region into several petrotectonic units with different P-T conditions. The geometry and kinematics of both the detachment zones and the petrotectonic units show that the exhumation of UHP and HP metamorphic rocks in the Dabie-Sulu region was achieved, at least in part, by non-coaxial ductile flow in the multi-layered detachment zones, and by coaxial vertical shortening and horizontal stretching in the metamorphic units, under amphibolite- to greenschist-facies conditions, and in an extensional regime. All ductile extensional deformations occurred at depths below 10 to 15 km, i.e. below the brittle/ductile deformation transition.展开更多
: The 3He/4He ratios of most eclogites from the Dabie-Sulu terrane range from 0.056 to 0.67 Ra; the data points fall into the mixing part of the crust and the mantle in the 3He-4He diagram. The 3He/4He ratios of eclog...: The 3He/4He ratios of most eclogites from the Dabie-Sulu terrane range from 0.056 to 0.67 Ra; the data points fall into the mixing part of the crust and the mantle in the 3He-4He diagram. The 3He/4He ratios of eclogites are obviously correlated with the types of their surrounding rocks. The helium isotope composition of the eclogites from the Bixiling complex possesses characters of mantle-derived rocks with the 3He/4He ratio being 5.6 Ra. The 4He concentration of the eclogites exhibits visible inverse correlation with the δ18O value of the quartz in the eclogites from the Sulu area. The δ18O values of the eclogites change synchronously with those of the country rocks. Those results suggest that protoliths of the eclogites were basic-ultrabasic rock bodies or veins intruding into the continental crust in the early stage; strong exchange and hybridization between the basic-ultrabasic rocks and continental rocks and the atmospheric water during the intrusion led to abrupt increase of the 3He/4He ratios, δ18O values and Nd(0) values of the intrusive bodies or veins, which show characters of continental rocks. This indicates that the eclogites are autochthonous.展开更多
The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region...The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region indicate that the Triassic collisional suture line between the Sino-Korean and Yangtze cratons is situated at the northern margin of the Dabie massif, that is,along the Balifan-Mozitan-Xiaotian fault in the Dabie region, and possibly is linked to the Wulian-Yantai fault in the Sulu region to tbe east. The suture line has been strongly modified duriug and subsequent to UHPM aud HPM events.展开更多
The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks,...The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud展开更多
in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-...in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-ity in d 18O values, with variation in different rocks from 8.5 to +9.7 and within one sample from 2 to 12. No measurable difference in d 18O was observed between proto-lith magmatic (detrital) zircons and metamorphic recrystal-lized zircons within analytical uncertainties from the ion micro-probe measurements. This indicates that the meta-morphic zircons have inherited the oxygen isotopic composi-tions of protolith zircons despite the HP to UHP metamor-phism. According to their protolith ages from zircon U-Pb in situ dating by the same ion micro-probe, two groups of oxy-gen isotope composition are recognized, with one having d 18O values of 6—7 for old protolith of 1.9—2.5 Ga ages and the other 0—2 for young protolith of 0.7—0.8 Ga ages. The latter anomalously low d 18O values of zircons in-dicate that the magma has had the obvious involvement of meteoric water when forming the young protolith of high-grade metamorphic rocks. This may be correlated with the snowball Earth event occurring in South China and the world elsewhere during the Neoproterozoic.展开更多
In-situ excimer laser ICP-MS analysis of minerals of eclogites and garnet pyrox- enites from type localities (Shuanghe, Maowu, Bixiling, and Yangkou) in the Dabie-Sulu ultra- high-pressure metamorphic belt reveals hig...In-situ excimer laser ICP-MS analysis of minerals of eclogites and garnet pyrox- enites from type localities (Shuanghe, Maowu, Bixiling, and Yangkou) in the Dabie-Sulu ultra- high-pressure metamorphic belt reveals highly variable Ce anomalies from negative to positive in garnet. Similar Ce anomalies are also present in omphacite or clinopyroxene but to a much lesser extent. Such mixed negative and positive Ce anomalies mimic those found in severe weathering profiles developed under oxidizing conditions. They suggest the presence of sub- ducted sediment components in the eclogites and garnet pyroxenites, which in turn points to the potential importance of the recycled sediments in modification of the mantle composition during the deep subduction of the continental crust.展开更多
基金Supported by the Chinese Academy of Sciences (Grant No. KZCX2-YW-131)the Chinese Ministry of Science and Technology (Grant No. 2009CB825004)National Natural Science Foundation of China (Grant No. 40673009)
文摘The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermedi- ate-mafic intrusive and volcanic rocks throughout the Dabie-Sulu orogenic belt. Despite the different ages for their emplacement, the Mesozoic magmatic rocks are all characterized not only by enrichment of LREE and LILE but depletion of HFSE, but also by high initial Sr isotope ratios, low εNd(t) values and low radiogeneic Pb isotope compositions. Some zircons from the Jurassic and Cretaceous granitoids contain inherited magmatic cores with Neoprotozoic and Triassic U-Pb ages. Most of the Cretaceous mafic rocks have zircon δ18O values and whole-rock δ13C values lower than those for the normal mantle. A systematic comparison with adjacent UHP metaigneous rocks shows that the Mesozoic granitoids and mafic rocks have elemental and isotopic features similar to the UHP metagranite and metabasite, respectively. This indicates that these magmatic and metamorphic rocks share the diagnostic features of lithospheric source that has tectonic affinity to the northern edge of the South China Block. Their precursors underwent the UHP metamorphism and the post-collisional anatexis, respectively at different times and depths. Therefore, the Mesozoic magmatic rocks were derived from anatexis of the subducted continental lithosphere itself beneath the collision-thickened orogen; the geodynamic mechanism of the post-collisional magmatisms is tectonic collapse of orogenic roots in response to lithospheric extension.
基金supported by the National Natural Science Foundation of China(Grant No.40172079)the Scientific Investigation of Chinese Continental Scientific Drilling Project(Grant No.2001 CCB00900).
文摘Micro-diamonds were only found ten years ago in eclogite associated with marble at Xindian in the Dabie Mountains. This paper reports our new finding of micro-diamonds not only in eclogites at Maobei in the Sulu region and at Xindian and Laoyoufang in the south part of the Dabie Mountains (South Dabie), but also in eclogites at Baizhangya and Huangweihe in the northern part of the Dabie Mountains (North Dabie) that has usually been considered not to experience ultrahigh pressure metamorphism. Except the micro-diamond at Huangweihe that was found from the artificial heavy sands of zircons used for isotopic dating, the micro-diamonds from other localities were identified in thin sections of the eclogites. Besides a few interstitial grains, most of the micro-diamond grains in thin sections occur as inclusion in garnet. Three crystals of micro- diamond at Maobei in the Sulu region are sized in 120, 60 and 30 mm, respectively. Crystal forms look like octahedron and the composite of octahedron and hexahedron. The largest micro-diamond crystal comes from Xindian, which is measured to be 180 mm in diameter with distinct zonal structure and inclusions. The zonal structure occurs as an inclined octahedron inside rounded by an incomplete hexagonal girdle. A smaller micro-diamond inclusion occurs inside the central octahedron, and a larger graphite inclusion is within the outer zone. The Laoyoufang micro-diamond is partially retrograded to graphite. Micro-diamond from the Baizhangya eclogite in the ultramafic rock belt of North Dabie is an aggregate of 70 mm×90 mm in size. All the micro-diamonds are confirmed by the Raman spectrum analysis. The occurrence of the micro-diamonds from the eclogites in the ultramafic rock belt of North Dabie demonstrates that this region was also subjected to ultrahigh pressure metamorphism as well as the South Dabie did.
基金the Chinese Academy of Sciences (Grant No. kzcx2-yw-131)the National Natural Science Foundation of China (Grant Nos. 40572035, 40634023 and40773013).
文摘Although tectonic models were presented for exhumation of ultrahigh-pressure (UHP) metamorphic rocks during the continental collision, there is increasing evidence for the decoupling between crustal slices at various depths within deeply subducted continental crust. This lends support to the multi-slice successive exhumation model of the UHP metamorphic rocks in the Dabie-Sulu orogen. The available evidence is summarized as follows: (1) the low-grade metamorphic slices, which have geotectonic affinity to the South China Block and part of them records the Triassic metamorphism, occur in the northern margin of the Dabie-Sulu UHP metamorphic zone, suggesting decoupling of the upper crust from the underlying basement during the initial stages of continental subduction; (2) the Dabie and Sulu HP to UHP metamorphic zones comprise several HP to UHP slices, which have an increased trend of metamorphic grade from south to north but a decreased trend of peak metamorphic ages correspondingly; and (3) the Chinese Continental Science Drilling (CCSD) project at Donghai in the Sulu orogen reveals that the UHP metamorphic zone is composed of several stacked slices, which display distinctive high and low radiogenic Pb from upper to lower parts in the profile, suggesting that these UHP crustal slices were derived from the subducted upper and middle crusts, respectively. Detachment surfaces within the deeply subducted crust may occur either along an ancient fault as a channel of fluid flow, which resulted in weakening of mechanic strength of the rocks adjacent to the fault due to fluid-rock interaction, or along the low-viscosity zones which resulted from variations of geotherms and lithospheric compositions at different depths. The multi-slice successive exhumation model is different from the traditional exhumation model of the UHP metamorphic rocks in that the latter assumes the detachment of the entire subducted continental crust from the underlying mantle lithosphere and its subsequent exhumation as a whole. This also reveals t
基金This work was supported by the Major State Basic Research Development Program (Grant No. G1999075503) National Natural Science Foundation of China (Grant No. 49873006) the Chinese Academy of Sciences (Grant No. KZCXZ-107).
文摘The consistence between the first rapid cooling time (226-219 Ma) of the untrahigh pressure metamorphic (UHPM) rocks in the Dabie Mountains and the formation time (205-220 Ma) of the syncollisional granites in the Qinling and Sulu areas suggests that the first rapid cooling and uplift of the UHPM rocks may be related to breakoff of subducted plate. Therefore the second rapid cooling and uplift (180-170 Ma) of the UHPM racks needs a post-colli-sional lithosphere delamination which resulted in the granitic magmatism with an age of about 170 Ma. In addition, the rapid rising of the Dabie dome in the early Cretaceous (130-110 Ma) and the corresponding large-scale magmatism in the Dabie Mountains need another litho-sphere delamination. The geochronology of the post-collis-ional mafic-ultramafic intrusions and geological relationship between the mafic-ultramafic intrusions and granites suggest that partial melting was initiated in the mantle, and then progressively developed in the crust, suggesting a mantle
基金the National 973 Project of Chinese Ministry of Science and Technology (Grant No. 2003CB716502) the Natural Science Foundation of China (Grant No. 40399143) +1 种基金 the German Science Foundation (DFG grant No. GE 1152/2-2 , WE2850/3- 1).
文摘Eclogite lenses in marbles from the Dabie-Sulu ultrahigh-pressure (UHP) terrane are deeply subducted meta-sedimentary rocks. Zircons in these rocks have been used to constrain the ages of prograde and UHP metamorphism during subduction, and later retrograde metamorphism during exhumation. Inherited (detrital) and metamorphic zircons were distinguished on the basis of transmitted light microscopy, cathodoluminescence (CL) imaging, trace element contents and mineral inclusions. The distribution of mineral inclusions combined with CL imaging of the metamorphic zircon make it possible to relate zircon zones (domains) to different metamorphic stages. Domain 1 consists of rounded, oblong and spindly cores with dark-luminescent images, and contains quartz eclogite facies mineral inclusion assemblages, indicating formation under high-pressure (HP) metamorphic conditions of T = 571-668℃ and P =1.7-2.02 GPa. Domain 2 always surrounds domain 1 or occurs as rounded and spindly cores with white-luminescent images. It contains coesite eclogite facies mineral inclusion assemblages, indicating formation under UHP metamorphic conditions of T = 782-849℃ and P 〉 5.5 GPa. Domain 3, with gray-luminescent images, always surrounds domain 2 and occurs as the outermost zircon rim. It is characterized by low-pressure mineral inclusion assemblages, which are related to regional amphibolite facies retrograde metamorphism of T = 600- 710℃ and P = 0.7-1.2 GPa. The three metamorphic zircon domains have distinct ages; sample H1 from the Dabie terrane yielded SHRIMP ages of 245 ± 4 Ma for domain 1, 235 ± 3 Ma for domain 2 and 215± 6 Ma for domain 3, whereas sample H2 from the Sulu terrane yielded similar ages of 244 ± 4 Ma, 233 ± 4 Ma and 214 ± 5 Ma for Domains 1, 2 and 3, respectively. The mean ages of these zones suggest that subduction to UHP depths took place over 10-11 Ma and exhumation of the rocks occurred over a period of 19-20 Ma. Thus, subduction from - 55 km to 〉 160 km deep mantle depth took place
文摘The Qinling-Dabie-Sulu high-pressure and ultra-high pressure metamorphic belt wasformed by subduction and collision between the North China and Yangtze plates. The study ofthe eclogite belt is very important in understanding the evolution of the Qinling Dabie orogen. Inthe present paper the geology, petrology, minerology and chronology of the eclogites in the Dabieand Sulu areas are described. The principal conclusions of this work are as follows: (1) Based up-on the field occurrence and the P-T conditions of the eclogites, two types of eclogite can be dis-tinguished: Type 1—the low-temperature and high-pressure eclogite in the mid-late Proterozoicmetamorphic series, and Type 2—the ultra-high pressure eclogite in the late Archaean to earlyProterozoic metamorphic complex. In the Dabie area, the ultra-high-pressure eclogite,high-pressure eclogite and epidote-blueschist units are nearly parallel to each other and stretchintermittently from north to south. (2) The P-T conditions of the high-pressure eclogites and ul-tra-high pressure eclogites have been estimated. The former are formed at 450-550℃ and1.4-1.6 GPa; while the latter at 650-870℃ and >2.7-2.9 GPa in the Dabie area and at820-1000℃ and >2.8-3.1 GPa in the Sulu area. The metamorphic temperatures of the eclogitesincrease progressively from west to east. (3) The ultra-high pressure eclogites were subjected to 5stages of metamorphism: pre-eclogite epidote amphibolite facies, peak coesite eclogite facies,post-eclogite amphibolite facies, epidote-blueschist facies or epidote amphibolite facies andgreenschist facies. The general features of the PTt path of the ultra-high pressure eclogite are:clockwise pattern, progressive metamorphism being a process of slow increasing temperature andrapid increasing pressure, and the retrogressive section with nearly isothermal decompression atthe early stage, isobaric cooling at the middle stage and nearly isothermal decompression at thelate stage. (4) At least two stages of high-pressure metamorphism occurred in the
基金This study was supported by the Key State Basic Research Development Project grant G1999075506the National Natural Science Foundation of China grants 49794041,49972067 and 49772146the former Ministry of Geology and Mineral Resources Project No.9501102.
文摘The present-day observable tectonic framework of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts in the Dabie-Sulu region was dominantly formed by an extensional process, mostly between 200 and 170 Ma, following the Triassic collision between the Sino-Korean and Yangtze cratons. The framework that controls the present spatial distribution of UHP and HP metamorphic rocks in particular displays the typical features of a Cordilleran-type metamorphic core complex, in which at least four regional-scale, shallow-dipping detachment zones are recognized. Each of these detachment zones corresponds to a pressure gap of 0.5 to 2.0 GPa. The detachment zones separate the rocks exposed in the region into several petrotectonic units with different P-T conditions. The geometry and kinematics of both the detachment zones and the petrotectonic units show that the exhumation of UHP and HP metamorphic rocks in the Dabie-Sulu region was achieved, at least in part, by non-coaxial ductile flow in the multi-layered detachment zones, and by coaxial vertical shortening and horizontal stretching in the metamorphic units, under amphibolite- to greenschist-facies conditions, and in an extensional regime. All ductile extensional deformations occurred at depths below 10 to 15 km, i.e. below the brittle/ductile deformation transition.
文摘: The 3He/4He ratios of most eclogites from the Dabie-Sulu terrane range from 0.056 to 0.67 Ra; the data points fall into the mixing part of the crust and the mantle in the 3He-4He diagram. The 3He/4He ratios of eclogites are obviously correlated with the types of their surrounding rocks. The helium isotope composition of the eclogites from the Bixiling complex possesses characters of mantle-derived rocks with the 3He/4He ratio being 5.6 Ra. The 4He concentration of the eclogites exhibits visible inverse correlation with the δ18O value of the quartz in the eclogites from the Sulu area. The δ18O values of the eclogites change synchronously with those of the country rocks. Those results suggest that protoliths of the eclogites were basic-ultrabasic rock bodies or veins intruding into the continental crust in the early stage; strong exchange and hybridization between the basic-ultrabasic rocks and continental rocks and the atmospheric water during the intrusion led to abrupt increase of the 3He/4He ratios, δ18O values and Nd(0) values of the intrusive bodies or veins, which show characters of continental rocks. This indicates that the eclogites are autochthonous.
文摘The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region indicate that the Triassic collisional suture line between the Sino-Korean and Yangtze cratons is situated at the northern margin of the Dabie massif, that is,along the Balifan-Mozitan-Xiaotian fault in the Dabie region, and possibly is linked to the Wulian-Yantai fault in the Sulu region to tbe east. The suture line has been strongly modified duriug and subsequent to UHPM aud HPM events.
基金supported by the Chinese National Key Scientific Program--the Chinese Continental Seientitle Drilling Projectthe National Natural Science Foundation of China(NSFC Grant 49772142)1:250000 Regional Geological Survey of the Lianyungang Sheet(I50C002004)of P.R.China and the Laboratory of Continental Dynamics of the Land and Resource Ministry of China
文摘The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud
基金supported by the National Natural Science Foundation of China(Grants Nos.40033010 and 40273028)the State Key Basic Research Project(Grant No.G1999075503)
文摘in situ analyses of oxygen isotopes were carried out by ion micro-probe for zircons from 8 localities of HP-UHP metamorphic rocks including eclogites in the Dabie-Sulu terrane. The results show significant heterogene-ity in d 18O values, with variation in different rocks from 8.5 to +9.7 and within one sample from 2 to 12. No measurable difference in d 18O was observed between proto-lith magmatic (detrital) zircons and metamorphic recrystal-lized zircons within analytical uncertainties from the ion micro-probe measurements. This indicates that the meta-morphic zircons have inherited the oxygen isotopic composi-tions of protolith zircons despite the HP to UHP metamor-phism. According to their protolith ages from zircon U-Pb in situ dating by the same ion micro-probe, two groups of oxy-gen isotope composition are recognized, with one having d 18O values of 6—7 for old protolith of 1.9—2.5 Ga ages and the other 0—2 for young protolith of 0.7—0.8 Ga ages. The latter anomalously low d 18O values of zircons in-dicate that the magma has had the obvious involvement of meteoric water when forming the young protolith of high-grade metamorphic rocks. This may be correlated with the snowball Earth event occurring in South China and the world elsewhere during the Neoproterozoic.
基金co-supported by the National Natural Science Foundation of China(Grant No.40133020)the Chinese Ministry of Science and Technology(Grant No.G1999043202).
文摘In-situ excimer laser ICP-MS analysis of minerals of eclogites and garnet pyrox- enites from type localities (Shuanghe, Maowu, Bixiling, and Yangkou) in the Dabie-Sulu ultra- high-pressure metamorphic belt reveals highly variable Ce anomalies from negative to positive in garnet. Similar Ce anomalies are also present in omphacite or clinopyroxene but to a much lesser extent. Such mixed negative and positive Ce anomalies mimic those found in severe weathering profiles developed under oxidizing conditions. They suggest the presence of sub- ducted sediment components in the eclogites and garnet pyroxenites, which in turn points to the potential importance of the recycled sediments in modification of the mantle composition during the deep subduction of the continental crust.