In general, copper nanoclusters (CuNCs) possess very low or even virtually no bactericidal effect. Herein,we report a novel CuNCs possessing significantly high antibacterial activity, that is tannic acid (TA)capped Cu...In general, copper nanoclusters (CuNCs) possess very low or even virtually no bactericidal effect. Herein,we report a novel CuNCs possessing significantly high antibacterial activity, that is tannic acid (TA)capped CuNCs (TA-CuNCs). TA-CuNCs exhibit strong absorption and excitation-dependent fluorescence within pH 2-12, resulting from the functional groups of TA-CuNCs due to two prototropic equilibria,phenolphenolate and carboxyliccarboxylate. There exists synergistic effect of TA and copper nanoclusters which endows TA-CuNCs remarkable antibacterial capability as a microbicide, as characterized by the effective inhibition on the growth of gram-positive bacteria by damaging the cell membrane. By incubating 1 x 10~7 CFU/mL of gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with 30 μg/mL of TA-CuNCs for 10 min, the bacteria are completely inhibited, while under same conditions the viabilities of gram-negative bacteria Escherichia coli 0157:H7 and Pseudomonas aeruginosa remain 85.0%, 72.0%, respectively. In addition, TA-CuNCs exhibit low cytotoxicity and favorable biocompatibility demonstrated by standard methyl thiazolyl tetrazolium (MTT) assay with HepG2 and 293 Tcells, giving rise to cell viability of 94.2% for HepG2 and 96.7% for 293 T by incubating 10~6 cell/mL with 200 μg/mL of TA-CuNCs for 24 h. These results make TA-CuNCs a potential alternative as bactericide for infection treatment caused by gram-positive bacteria.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21675019,21727811,21575020)Fundamental Research Funds for the Central Universities (Nos. N170505002,N170504017,N170507001)
文摘In general, copper nanoclusters (CuNCs) possess very low or even virtually no bactericidal effect. Herein,we report a novel CuNCs possessing significantly high antibacterial activity, that is tannic acid (TA)capped CuNCs (TA-CuNCs). TA-CuNCs exhibit strong absorption and excitation-dependent fluorescence within pH 2-12, resulting from the functional groups of TA-CuNCs due to two prototropic equilibria,phenolphenolate and carboxyliccarboxylate. There exists synergistic effect of TA and copper nanoclusters which endows TA-CuNCs remarkable antibacterial capability as a microbicide, as characterized by the effective inhibition on the growth of gram-positive bacteria by damaging the cell membrane. By incubating 1 x 10~7 CFU/mL of gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with 30 μg/mL of TA-CuNCs for 10 min, the bacteria are completely inhibited, while under same conditions the viabilities of gram-negative bacteria Escherichia coli 0157:H7 and Pseudomonas aeruginosa remain 85.0%, 72.0%, respectively. In addition, TA-CuNCs exhibit low cytotoxicity and favorable biocompatibility demonstrated by standard methyl thiazolyl tetrazolium (MTT) assay with HepG2 and 293 Tcells, giving rise to cell viability of 94.2% for HepG2 and 96.7% for 293 T by incubating 10~6 cell/mL with 200 μg/mL of TA-CuNCs for 24 h. These results make TA-CuNCs a potential alternative as bactericide for infection treatment caused by gram-positive bacteria.