Most olefins (e.g., ethylene and propylene) will continue to be produced through steam cracking (SC) ofhydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investingvery li...Most olefins (e.g., ethylene and propylene) will continue to be produced through steam cracking (SC) ofhydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investingvery little in alternative technologies and feedstocks because of their current lack of economic viability,despite decreasing crude oil reserves and the recognition of global warming. In this perspective, some of themost promising alternatives are compared with the conventional SC process, and the major bottlenecks ofeach of the competing processes are highlighted. These technologies emerge especially from the abundanceof cheap propane, ethane, and methane from shale gas and stranded gas. From an economic point of view,methane is an interesting starting material, if chemicals can be produced from it. The huge availability ofcrude oil and the expected substantial decline in the demand for fuels imply that the future for proventechnologies such as Fischer-Tropsch synthesis (FFS) or methanol to gasoline is not bright. The abundance ofcheap ethane and the large availability of crude oil, on the other hand, have caused the SC industry to shiftto these two extremes, making room for the on-purpose production of light olefins, such as by the catalyticdehydrogenation of orooane.展开更多
The conversion of carbon dioxide(CO2)to valuable fuels and chemicals offers a new pathway for sustainable and clean carbon fixation.Recently,the focus has been on electrochemical CO2 reduction on heterogeneous electro...The conversion of carbon dioxide(CO2)to valuable fuels and chemicals offers a new pathway for sustainable and clean carbon fixation.Recently,the focus has been on electrochemical CO2 reduction on heterogeneous electrode catalysts,leading to remarkable achievements in the reaction performance.To date,CO2 to carbon monoxide(CO)conversion is considered as the most promising candidate reaction for the industrial market,owing to its high efficiency and reasonable technoeconomic feasibility.Moreover,CO has been proposed as a key intermediate species for further reduced hydrocarbons,which can pave the way for various fuel production.This study sets out to describe recent progress on the electrochemical CO2 reduction to CO in a heterogeneously catalyzed system.The review includes understanding of the catalytic material employed and engineering strategies implemented by adjusting the binding energy of key adsorbates.These material design approaches,such as nanostructuring,alloying,doping,and so forth,have pioneered breakouts in the intrinsic catalytic nature of transition metal elements.Moreover,recent advances in systematic design are summarized,with focus on practical industrial applications.Finally,perspectives on the design of electrocatalyst materials for CO production by electrochemical CO2 reduction are presented.展开更多
基金supported by the Long-Term Structural Methusalem Funding (BOF09/01M00409)by the Flemish Government and the European Union’s Horizon H2020 Programme (H2020SPIRE-0 4-2016) under grant agreement No. 72370 6+2 种基金financial support from SABIC Geleenfinancial support from a doctoral fellowship from the Fund for Scientific Research Flanders (FWO)
文摘Most olefins (e.g., ethylene and propylene) will continue to be produced through steam cracking (SC) ofhydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investingvery little in alternative technologies and feedstocks because of their current lack of economic viability,despite decreasing crude oil reserves and the recognition of global warming. In this perspective, some of themost promising alternatives are compared with the conventional SC process, and the major bottlenecks ofeach of the competing processes are highlighted. These technologies emerge especially from the abundanceof cheap propane, ethane, and methane from shale gas and stranded gas. From an economic point of view,methane is an interesting starting material, if chemicals can be produced from it. The huge availability ofcrude oil and the expected substantial decline in the demand for fuels imply that the future for proventechnologies such as Fischer-Tropsch synthesis (FFS) or methanol to gasoline is not bright. The abundance ofcheap ethane and the large availability of crude oil, on the other hand, have caused the SC industry to shiftto these two extremes, making room for the on-purpose production of light olefins, such as by the catalyticdehydrogenation of orooane.
基金The authors acknowledge the support from the Korea Institute of Science and Technology(KIST)institutional program and YU-KIST convergence programpartially from National Research Foundation(NRF)funded by the Korean Government(No.2019R1A2C2005521).
文摘The conversion of carbon dioxide(CO2)to valuable fuels and chemicals offers a new pathway for sustainable and clean carbon fixation.Recently,the focus has been on electrochemical CO2 reduction on heterogeneous electrode catalysts,leading to remarkable achievements in the reaction performance.To date,CO2 to carbon monoxide(CO)conversion is considered as the most promising candidate reaction for the industrial market,owing to its high efficiency and reasonable technoeconomic feasibility.Moreover,CO has been proposed as a key intermediate species for further reduced hydrocarbons,which can pave the way for various fuel production.This study sets out to describe recent progress on the electrochemical CO2 reduction to CO in a heterogeneously catalyzed system.The review includes understanding of the catalytic material employed and engineering strategies implemented by adjusting the binding energy of key adsorbates.These material design approaches,such as nanostructuring,alloying,doping,and so forth,have pioneered breakouts in the intrinsic catalytic nature of transition metal elements.Moreover,recent advances in systematic design are summarized,with focus on practical industrial applications.Finally,perspectives on the design of electrocatalyst materials for CO production by electrochemical CO2 reduction are presented.