Variable gauge rolling (VGR) is a new technology to produce flat products with different thicknesses (FDT), which could be used to replace conventional fiat products in order to save metals and reduce structure ma...Variable gauge rolling (VGR) is a new technology to produce flat products with different thicknesses (FDT), which could be used to replace conventional fiat products in order to save metals and reduce structure mass. The method of VGR was introduced for investigating new problems in rolling theory of VGR, and the new formulas for calculating parameters of VGR were proposed. Besides, some results of numerical simulation by finite elemen~ method were described. As an example, the products applications of FDT in bridge construction, ship building and auto manufacturing were presented. Finally, the prospects for VGR and FDT were discussed.展开更多
The event Permian-Triassic boundary (EPTB) is well marked by the famous 'white clay' of bed 25 in Mei-shan Section located in Changxing county, Zhejiang province of China. In this note, the white clay as well ...The event Permian-Triassic boundary (EPTB) is well marked by the famous 'white clay' of bed 25 in Mei-shan Section located in Changxing county, Zhejiang province of China. In this note, the white clay as well as its overlying and underlying sequences is investigated particularly for mineralogical records. The investigation yields three findings that contribute to better understanding the scenario of the EPTB mass extinction. (i) A red goethite-rich microlayer (0.3 mm) is first recognized to be horizontally widespread on the base of the white clay in the section. The microlayer should be considered as a macro geochemical indicator naturally tracing a catastrophic initiation at the EPTB. (ii) An interruption of marine carbonate deposition is discovered due to blank of carbonate minerals in the white clay. The discovery provides significant evidence of a marine acidification event that would occur in the paleo-ocean with marine acidity estimated at pH【4.0 at least and be triggered by the ultimate展开更多
Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "ca...Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "casting-rolling compound forming technology" is researched by taking the typical 42CrMo slew bearing as object. Through theoretical analysis, the design criteria of the main casting-rolling forming parameters are put forward at first. Then the constitutive relationship model of as-cast 42CrMo steel and its mathematical model of dynamic recrystallization are obtained according to the results of the hot compression experiment. By a coupled thermal-mechanical finite element model for radial-axial rolling of bearing ring, the fraction of dynamic recrystallization is calculated and recrystallized grains size are predicated. Meanwhile, the effects of the initial rolling temperature and feed rate of idle roll on material microstructure evolution are analyzed. Finally, the industrial rolling experiment is designed and performed, based on the simulation results. In addition, mechanical and metallographic tests are conducted on rolled bearing ring to get the mechanical parameters and metallographic structure. The experimental data and results show that the mechanical properties of bearing ring produced by casting-rolling compound forming technology are up to industrial standard, and a qualified bearing ring can be successfully formed by employing this new technology. Through the study, a process of forming large bearing ring directly by using casting ring blank is obtained, which could provide an effective theoretical guidance for manufacturing large ring parts. It also has an edge in saving material, lowering energy and improving efficiency.展开更多
By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The ...By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.展开更多
The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension w...The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension was set up, and the deformation formulae for the thinner side and for the thicker side were derived to quantify the deformation of TRB. On this basis, uniaxial tension tests on TRB and ordinary blanks (the thinner side and the thicker side of TRB) were conducted. Lagrange polynomial interpolation method was adopted to construct the stress-strain fields of unannealed and annealed TRBs for solving TRB material parameters, and then, uniaxial tension simulation on TRB was completed. Deformations and properties of unannealed TRB were compared with those of annealed TRB, and the thinner side and the thicker side were also compared. Finally, the research results were explained by metallurgical structure. The results show that nonuniform deformation happens in TRB during uniaxial tension, and the necking occurs on the thinner side. The agreement of analysis, test and simulation confirms the correctness of the analytical model and the deformation formulae. The findings of this paper can lay the foundation for the future study on TRB stamping formability and provide a way for TRB modeling.展开更多
This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given...This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.展开更多
Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidi...Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality.展开更多
Variable gauge rolling (VGR) is a new technology for producing the materials which have the advantage of lightweight due to optimized thickness according to load distribution. The new progresses in the theoretical r...Variable gauge rolling (VGR) is a new technology for producing the materials which have the advantage of lightweight due to optimized thickness according to load distribution. The new progresses in the theoretical research and application of VGR are reviewed in this paper. Two basic equations, VGR-f and VGR-s, were deduced. The former is a new differential equation of force equilibrium, and the latter is a new form of formula for the law of mass conservation. Both of them provide a new base for the development of VGR analysis. As the examples of VGR's application, tailor rolled blank (TRB) and longitudinal profile (LP) plate are introduced. Now TRBs are only produced in Germany and China, and have been used in the automotive manufacturing to play an important role in lightweight design. LP plates have been used in shipbuilding and bridge construction, and promised a bright prospect in reducing construction weight. In addition, new technologies and applications of VGR emerge constantly. Tailor welded strips and tailor rolled strips with variable thickness across the width can be used for progressive die and roll forming. The 3D profiled blank can be obtained by two-step rolling process. Tailor tubes witli the variable wail thickness are an efficient way to reduce the weight. The blank with tailored thickness and mechanical property is also under development. Above products based on the tailored ideas provide a new materials-warehouse for the designers to select so as to meet the needs of weight reducing and material saving.展开更多
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50634030,50974039)
文摘Variable gauge rolling (VGR) is a new technology to produce flat products with different thicknesses (FDT), which could be used to replace conventional fiat products in order to save metals and reduce structure mass. The method of VGR was introduced for investigating new problems in rolling theory of VGR, and the new formulas for calculating parameters of VGR were proposed. Besides, some results of numerical simulation by finite elemen~ method were described. As an example, the products applications of FDT in bridge construction, ship building and auto manufacturing were presented. Finally, the prospects for VGR and FDT were discussed.
基金This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 40072055 and 40043010).
文摘The event Permian-Triassic boundary (EPTB) is well marked by the famous 'white clay' of bed 25 in Mei-shan Section located in Changxing county, Zhejiang province of China. In this note, the white clay as well as its overlying and underlying sequences is investigated particularly for mineralogical records. The investigation yields three findings that contribute to better understanding the scenario of the EPTB mass extinction. (i) A red goethite-rich microlayer (0.3 mm) is first recognized to be horizontally widespread on the base of the white clay in the section. The microlayer should be considered as a macro geochemical indicator naturally tracing a catastrophic initiation at the EPTB. (ii) An interruption of marine carbonate deposition is discovered due to blank of carbonate minerals in the white clay. The discovery provides significant evidence of a marine acidification event that would occur in the paleo-ocean with marine acidity estimated at pH【4.0 at least and be triggered by the ultimate
基金supported by Key Program of National Natural Science Foundation of China(Grant No.51135007)National Natural Science Foundation of China(Grant No.51075290)
文摘Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "casting-rolling compound forming technology" is researched by taking the typical 42CrMo slew bearing as object. Through theoretical analysis, the design criteria of the main casting-rolling forming parameters are put forward at first. Then the constitutive relationship model of as-cast 42CrMo steel and its mathematical model of dynamic recrystallization are obtained according to the results of the hot compression experiment. By a coupled thermal-mechanical finite element model for radial-axial rolling of bearing ring, the fraction of dynamic recrystallization is calculated and recrystallized grains size are predicated. Meanwhile, the effects of the initial rolling temperature and feed rate of idle roll on material microstructure evolution are analyzed. Finally, the industrial rolling experiment is designed and performed, based on the simulation results. In addition, mechanical and metallographic tests are conducted on rolled bearing ring to get the mechanical parameters and metallographic structure. The experimental data and results show that the mechanical properties of bearing ring produced by casting-rolling compound forming technology are up to industrial standard, and a qualified bearing ring can be successfully formed by employing this new technology. Through the study, a process of forming large bearing ring directly by using casting ring blank is obtained, which could provide an effective theoretical guidance for manufacturing large ring parts. It also has an edge in saving material, lowering energy and improving efficiency.
基金Project supported by the National Natural Sciences Foundation of China(No. 50335060).
文摘By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.
基金financially supported by the National Natural Science Foundation of China (Nos. 51105068 and 51475086)the Fundamental Research Funds for the Central Universities (Nos. N130323003 and XNB201413)the Science and Technology Research Project for Higher School of Hebei Province (No. Z2013068)
文摘The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension was set up, and the deformation formulae for the thinner side and for the thicker side were derived to quantify the deformation of TRB. On this basis, uniaxial tension tests on TRB and ordinary blanks (the thinner side and the thicker side of TRB) were conducted. Lagrange polynomial interpolation method was adopted to construct the stress-strain fields of unannealed and annealed TRBs for solving TRB material parameters, and then, uniaxial tension simulation on TRB was completed. Deformations and properties of unannealed TRB were compared with those of annealed TRB, and the thinner side and the thicker side were also compared. Finally, the research results were explained by metallurgical structure. The results show that nonuniform deformation happens in TRB during uniaxial tension, and the necking occurs on the thinner side. The agreement of analysis, test and simulation confirms the correctness of the analytical model and the deformation formulae. The findings of this paper can lay the foundation for the future study on TRB stamping formability and provide a way for TRB modeling.
基金National Natural Science Foundation of China (50475148)Aeronautical Science Foundation of China (04C53015)Areonautical Sci-tech Innovation Foundation of China (07B53004)
文摘This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.
文摘Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality.
基金supported by the National Natural Science Foundation of China (Nos. 51034009, 51374069 and 51174249).
文摘Variable gauge rolling (VGR) is a new technology for producing the materials which have the advantage of lightweight due to optimized thickness according to load distribution. The new progresses in the theoretical research and application of VGR are reviewed in this paper. Two basic equations, VGR-f and VGR-s, were deduced. The former is a new differential equation of force equilibrium, and the latter is a new form of formula for the law of mass conservation. Both of them provide a new base for the development of VGR analysis. As the examples of VGR's application, tailor rolled blank (TRB) and longitudinal profile (LP) plate are introduced. Now TRBs are only produced in Germany and China, and have been used in the automotive manufacturing to play an important role in lightweight design. LP plates have been used in shipbuilding and bridge construction, and promised a bright prospect in reducing construction weight. In addition, new technologies and applications of VGR emerge constantly. Tailor welded strips and tailor rolled strips with variable thickness across the width can be used for progressive die and roll forming. The 3D profiled blank can be obtained by two-step rolling process. Tailor tubes witli the variable wail thickness are an efficient way to reduce the weight. The blank with tailored thickness and mechanical property is also under development. Above products based on the tailored ideas provide a new materials-warehouse for the designers to select so as to meet the needs of weight reducing and material saving.
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.