Based on a 5 MSBs (most-significant-bits)-plus-5 LSBs (least-significant-bits) C-R hybrid D/A conver sion and low-offset pseudo-differential comparison approach, with capacitor array axially symmetric layout topol...Based on a 5 MSBs (most-significant-bits)-plus-5 LSBs (least-significant-bits) C-R hybrid D/A conver sion and low-offset pseudo-differential comparison approach, with capacitor array axially symmetric layout topology and resistor string low gradient mismatch placement method, an 8-channel 10-bit 200-kS/s SAR ADC (successiveapproximation-register analog-to-digital converter) IP core for a touch screen SoC (system-on-chip) is implemented in a 0.18 μm 1P5M CMOS logic process. Design considerations for the touch screen SAR ADC are included. With a 1.8 V power supply, the DNL (differential non-linearity) and INL (integral non-linearity) of this converter are measured to be about 0.32 LSB and 0.81 LSB respectively. With an input frequency of 91 kHz at 200-kS/s sampling rate, the spurious-free dynamic range and effective-number-of-bits are measured to be 63.2 dB and 9.15 bits respectively, and the power is about 136 μW. This converter occupies an area of about 0.08 mm^2. The design results show that it is very suitable for touch screen SoC applications.展开更多
A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shiflers are utilized. Design ...A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shiflers are utilized. Design challenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlinearity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238× 214 μm^2. The design results of this converter show that it is suitable for multi-supply embedded SoC applications.展开更多
A reconfigurable analog baseband circuit for WLAN,WCDMA,and Bluetooth in 0.35μm CMOS is presented. The circuit consists of two variable gain amplifiers(VGA) in cascade and a Gm-C elliptic low-pass filter(LPF). Th...A reconfigurable analog baseband circuit for WLAN,WCDMA,and Bluetooth in 0.35μm CMOS is presented. The circuit consists of two variable gain amplifiers(VGA) in cascade and a Gm-C elliptic low-pass filter(LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption,the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application.Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN,8.9 mW for WCDMA and only 6.5 mW for Bluetooth,all with a 3 V power supply.The analog baseband circuit could provide -10 to +40 dB variable gain,third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth,fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN,respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.60725415,60971066,60676009,60776034,60803038)the National High-Tech Research and Development Program of China(Nos.2009AA01Z258,2009AA01Z260)the National Science & Technology Important Project of China(No.2009ZX01034-002-001-005)
文摘Based on a 5 MSBs (most-significant-bits)-plus-5 LSBs (least-significant-bits) C-R hybrid D/A conver sion and low-offset pseudo-differential comparison approach, with capacitor array axially symmetric layout topology and resistor string low gradient mismatch placement method, an 8-channel 10-bit 200-kS/s SAR ADC (successiveapproximation-register analog-to-digital converter) IP core for a touch screen SoC (system-on-chip) is implemented in a 0.18 μm 1P5M CMOS logic process. Design considerations for the touch screen SAR ADC are included. With a 1.8 V power supply, the DNL (differential non-linearity) and INL (integral non-linearity) of this converter are measured to be about 0.32 LSB and 0.81 LSB respectively. With an input frequency of 91 kHz at 200-kS/s sampling rate, the spurious-free dynamic range and effective-number-of-bits are measured to be 63.2 dB and 9.15 bits respectively, and the power is about 136 μW. This converter occupies an area of about 0.08 mm^2. The design results show that it is very suitable for touch screen SoC applications.
基金supported by the National Natural Science Foundation of China(Nos.60676009,60725415,60776034,60803038)the National High-Tech Research and Development Program of China(Nos.2009AA01Z258,2009AA01Z260).
文摘A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shiflers are utilized. Design challenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlinearity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238× 214 μm^2. The design results of this converter show that it is suitable for multi-supply embedded SoC applications.
基金supported by the National Natural Science Foundation of China(No.60806008)the Fok Ying Tung Education Foundation, China(No.104028).
文摘A reconfigurable analog baseband circuit for WLAN,WCDMA,and Bluetooth in 0.35μm CMOS is presented. The circuit consists of two variable gain amplifiers(VGA) in cascade and a Gm-C elliptic low-pass filter(LPF). The filter-order and the cut-off frequency of the LPF can be reconfigured to satisfy the requirements of various applications. In order to achieve the optimum power consumption,the bandwidth of the VGAs can also be dynamically reconfigured and some Gm cells can be cut off in the given application.Simulation results show that the analog baseband circuit consumes 16.8 mW for WLAN,8.9 mW for WCDMA and only 6.5 mW for Bluetooth,all with a 3 V power supply.The analog baseband circuit could provide -10 to +40 dB variable gain,third-order low pass filtering with 1 MHz cut-off frequency for Bluetooth,fourth-order low pass filtering with 2.2 MHz cut-off frequency for WCDMA, and fifth-order low pass filtering with 11 MHz cut-off frequency for WLAN,respectively.