We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold i...We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approximation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data points with respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements.展开更多
文摘We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approximation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data points with respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements.