Positron emission tomography (PET) imaging has emerged as an important clinical tool for cancer management, and specifically targeted radiopharmaceuticals play critical roles on PET molecular imaging. Solid cancers ha...Positron emission tomography (PET) imaging has emerged as an important clinical tool for cancer management, and specifically targeted radiopharmaceuticals play critical roles on PET molecular imaging. Solid cancers have highly complex and heterogeneous microenvironment, this review focused on those microenvironmental factors such as hypoxia, proliferation and perfusion and, accordingly, a novel test system for validation of current and novel targeted imaging radiopharmaceuticals. In this review, we have introduced the establishment of cancer and metastases models in nude mice, visualization of microenvironmental components of hypoxia, proliferation, perfusion, stroma and necrosis in cancers and metastases for establishing the microenvironment based model system, and validation of several radio- pharmaceuticals such as 18F-fluoro-2-deoxyglucose (18F-FDG) 18F-fluorothymidine (18F-FLT), 18F-misonidazole (18F- FMISO) using the system. We found that 18F-FLT accumulates in proliferating cancer cells, while 18F-FMISO and 18F-FDG mostly accumulate in hypoxic and non-proliferative cancer cells, 18F-FDG shares roughly similar intratumoral distribution pattern with 18F-FMISO and IAZGP, but mutually excludes 18F-FLT. This model system validated current tracers for imaging glucose metabolism, hypoxia and proliferation in cancer and metastases, therefore, can be used for novel targeted radiopharmaceuticals validation.展开更多
Background Prevention is presently the only available method to limit radiation-induced lung morbidity. A good predictor is the key point of prevention. This study aimed to investigate if [^18F]2-fluoro-2-deoxyglucose...Background Prevention is presently the only available method to limit radiation-induced lung morbidity. A good predictor is the key point of prevention. This study aimed to investigate if [^18F]2-fluoro-2-deoxyglucose (FDG) uptake changes in the lung after radiotherapy could be used as a new predictor for acute radiation pneumonitis (RP). Methods Forty-one patients with lung cancer underwent FDG positron emission tomography/computed tomography (FDG-PET/CT) imaging before and after radiotherapy. The mean standardized uptake value (SUV) was measured for the isodose regions of 0-9 Gy, 10-19 Gy, 20-29 Gy, 30-39 Gy, 40-49 Gy. The mean SUV of these regions after radiotherapy was compared with baseline. The mean SUV in patients who developed RP was also compared with that in those who did not. The statistical difference was determined by matched pair t test. The Radiation Therapy Oncology Group (RTOG) criteria were used for diagnosis and grading of RP. Results With a median follow-up of 12 months, 11 (26.8%) of the 41 patients developed grade 2 and above acute RP. The mean SUV of regions (10-19 Gy, 20-29 Gy, 30-39 Gy, 40-49 Gy) increased after radiation therapy in all 41 patients. The mean SUVs after radiation therapy were 0.54, 0.68, 1.31, 1.74 and 2.27 for 0-9 Gy, 10-19 Gy, 20-29 Gy, 30-39 Gy and 40-49 Gy, respectively. Before the radiation therapy, the mean SUV in each region was 0.53, 0.52, 0.52, 0.53 and 0.54, respectively. These patients had significantly higher FDG activities in regions receiving 10 Gy or more (P 〈0.001). Compared with their counterparts, the elevation of SUV was significantly greater in those patients who developed acute RP subsequently. Conclusion The mean SUV of the lung tissue may be a useful predictor for the acute RP. FDG-PET/CT may play a new role in the study of the radiation damage of the lung.展开更多
AIM:To evaluate the correlation between the level of 18 F-fluoro-2-deoxyglucose (18 F-FDG) uptake and glucose transporter 1 (GLUT1) expression in colorectal adenocarcinoma (CRA).METHODS:Forty four patients with resect...AIM:To evaluate the correlation between the level of 18 F-fluoro-2-deoxyglucose (18 F-FDG) uptake and glucose transporter 1 (GLUT1) expression in colorectal adenocarcinoma (CRA).METHODS:Forty four patients with resected CRA and preoperative 18 F-FDG positron emission tomography computed tomography data were investigated in this study.Comparison of maximum standardized uptake value (SUVmax) of the lesion was made with GLUT1 expression by immunohistochemistry and various clinicopathologic factors including tumor volume,invasion depth,gross finding,and lymph node metastasis.RESULTS:SUVmax was 14.45 ± 7.0 in negative GLUT1 expression cases,15.51 ± 5.7 in weak GLUT1 expression cases,and 16.52 ± 6.8 in strong GLUT1 expression cases,and there was no correlation between between GLUT1 expression and SUVmax.SUVmax was significantly correlated with tumor volume (P < 0.001).However,there was no significant differences in SUVmax and GLUT1 expression among other clinicopathologic factors.CONCLUSION:GLUT1 expression does not correlates significantly with 18 F-FDG uptake in CRA.18 F-FDG uptake was increased with tumor volume,which is statistically significant.展开更多
文摘Positron emission tomography (PET) imaging has emerged as an important clinical tool for cancer management, and specifically targeted radiopharmaceuticals play critical roles on PET molecular imaging. Solid cancers have highly complex and heterogeneous microenvironment, this review focused on those microenvironmental factors such as hypoxia, proliferation and perfusion and, accordingly, a novel test system for validation of current and novel targeted imaging radiopharmaceuticals. In this review, we have introduced the establishment of cancer and metastases models in nude mice, visualization of microenvironmental components of hypoxia, proliferation, perfusion, stroma and necrosis in cancers and metastases for establishing the microenvironment based model system, and validation of several radio- pharmaceuticals such as 18F-fluoro-2-deoxyglucose (18F-FDG) 18F-fluorothymidine (18F-FLT), 18F-misonidazole (18F- FMISO) using the system. We found that 18F-FLT accumulates in proliferating cancer cells, while 18F-FMISO and 18F-FDG mostly accumulate in hypoxic and non-proliferative cancer cells, 18F-FDG shares roughly similar intratumoral distribution pattern with 18F-FMISO and IAZGP, but mutually excludes 18F-FLT. This model system validated current tracers for imaging glucose metabolism, hypoxia and proliferation in cancer and metastases, therefore, can be used for novel targeted radiopharmaceuticals validation.
文摘Background Prevention is presently the only available method to limit radiation-induced lung morbidity. A good predictor is the key point of prevention. This study aimed to investigate if [^18F]2-fluoro-2-deoxyglucose (FDG) uptake changes in the lung after radiotherapy could be used as a new predictor for acute radiation pneumonitis (RP). Methods Forty-one patients with lung cancer underwent FDG positron emission tomography/computed tomography (FDG-PET/CT) imaging before and after radiotherapy. The mean standardized uptake value (SUV) was measured for the isodose regions of 0-9 Gy, 10-19 Gy, 20-29 Gy, 30-39 Gy, 40-49 Gy. The mean SUV of these regions after radiotherapy was compared with baseline. The mean SUV in patients who developed RP was also compared with that in those who did not. The statistical difference was determined by matched pair t test. The Radiation Therapy Oncology Group (RTOG) criteria were used for diagnosis and grading of RP. Results With a median follow-up of 12 months, 11 (26.8%) of the 41 patients developed grade 2 and above acute RP. The mean SUV of regions (10-19 Gy, 20-29 Gy, 30-39 Gy, 40-49 Gy) increased after radiation therapy in all 41 patients. The mean SUVs after radiation therapy were 0.54, 0.68, 1.31, 1.74 and 2.27 for 0-9 Gy, 10-19 Gy, 20-29 Gy, 30-39 Gy and 40-49 Gy, respectively. Before the radiation therapy, the mean SUV in each region was 0.53, 0.52, 0.52, 0.53 and 0.54, respectively. These patients had significantly higher FDG activities in regions receiving 10 Gy or more (P 〈0.001). Compared with their counterparts, the elevation of SUV was significantly greater in those patients who developed acute RP subsequently. Conclusion The mean SUV of the lung tissue may be a useful predictor for the acute RP. FDG-PET/CT may play a new role in the study of the radiation damage of the lung.
基金Supported by National Research Foundation of Korea Grant funded by the Ministry of Education,Science and Technology through the Research Center for Resistant Cells,No.R13-2003-009
文摘AIM:To evaluate the correlation between the level of 18 F-fluoro-2-deoxyglucose (18 F-FDG) uptake and glucose transporter 1 (GLUT1) expression in colorectal adenocarcinoma (CRA).METHODS:Forty four patients with resected CRA and preoperative 18 F-FDG positron emission tomography computed tomography data were investigated in this study.Comparison of maximum standardized uptake value (SUVmax) of the lesion was made with GLUT1 expression by immunohistochemistry and various clinicopathologic factors including tumor volume,invasion depth,gross finding,and lymph node metastasis.RESULTS:SUVmax was 14.45 ± 7.0 in negative GLUT1 expression cases,15.51 ± 5.7 in weak GLUT1 expression cases,and 16.52 ± 6.8 in strong GLUT1 expression cases,and there was no correlation between between GLUT1 expression and SUVmax.SUVmax was significantly correlated with tumor volume (P < 0.001).However,there was no significant differences in SUVmax and GLUT1 expression among other clinicopathologic factors.CONCLUSION:GLUT1 expression does not correlates significantly with 18 F-FDG uptake in CRA.18 F-FDG uptake was increased with tumor volume,which is statistically significant.