A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas...A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.展开更多
This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations...This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Xray diffraction.The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions(Al–Mg oxides and Al–Mg–Ti oxides),whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides.We observed a new MgAl2O4 phase at the inner wall of the MgO crucible,with the alloy melted in the MgO crucible exhibiting fewer inclusions.No new phase occurred at the inner wall of the Al2O3 crucible.We discuss the mechanism of interaction between the refractories and the Ni-based superalloy.Physical erosion was found to predominate in the Al2O3 crucible,whereas dissolution and chemical reactions dominated in the MgO crucible.No reaction was observed between three crucibles and the Ti of the melt although the Ti content(3.8wt%)was higher than that of Al(2.1wt%).展开更多
基金Item Sponsored by National Natural Science Foundation of China(50534010)
文摘A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
基金This work is financially supported by the Natural Science Foundation of China(No.51974029)the Natural Science and Technology Major Project(No.2017-VI-0014-0086)and Fundamental Research Funds for the Central Universities(Nos.FRF-AT-19-013 and FRF-NP-19-003).
文摘This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Xray diffraction.The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions(Al–Mg oxides and Al–Mg–Ti oxides),whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides.We observed a new MgAl2O4 phase at the inner wall of the MgO crucible,with the alloy melted in the MgO crucible exhibiting fewer inclusions.No new phase occurred at the inner wall of the Al2O3 crucible.We discuss the mechanism of interaction between the refractories and the Ni-based superalloy.Physical erosion was found to predominate in the Al2O3 crucible,whereas dissolution and chemical reactions dominated in the MgO crucible.No reaction was observed between three crucibles and the Ti of the melt although the Ti content(3.8wt%)was higher than that of Al(2.1wt%).