Cross-resistance, resistance mechanisms, and mode of inheritance of spinosad resistance were studied in the western flower thrip, Frankliniella occidentalis (Pergande). Spinosad (naturalyte insecticide) showed low...Cross-resistance, resistance mechanisms, and mode of inheritance of spinosad resistance were studied in the western flower thrip, Frankliniella occidentalis (Pergande). Spinosad (naturalyte insecticide) showed low cross-resistance to prothiophos (organophosphorus insecticide) and chlorphenapyr (respiratory inhibitor) showed some cross-resistance to thiocyclam (nereistoxin). The synergists PBO (piperonyl butoxide), DEM (diethyl maleate), and DEF (s,s,s-tributyl phosphorotrithioate) did not show any synergism on the toxicity of spinosad in the resistant strain (ICS), indicating that metabolic- mediated detoxification was not responsible for the spinosad resistance, suggesting that spinosad may reduce sensitivity of the target site: the nicotinic acetylcholine receptor and GABA receptor. Following reciprocal crosses, dose-response lines and dominance ratios indicated that spinosad resistance was incompletely dominant and there were no maternal effects. The results of backcross showed that spinosad resistance did not fit a single-gene hypothesis, suggesting that resistance was influenced by several genes.展开更多
文摘Cross-resistance, resistance mechanisms, and mode of inheritance of spinosad resistance were studied in the western flower thrip, Frankliniella occidentalis (Pergande). Spinosad (naturalyte insecticide) showed low cross-resistance to prothiophos (organophosphorus insecticide) and chlorphenapyr (respiratory inhibitor) showed some cross-resistance to thiocyclam (nereistoxin). The synergists PBO (piperonyl butoxide), DEM (diethyl maleate), and DEF (s,s,s-tributyl phosphorotrithioate) did not show any synergism on the toxicity of spinosad in the resistant strain (ICS), indicating that metabolic- mediated detoxification was not responsible for the spinosad resistance, suggesting that spinosad may reduce sensitivity of the target site: the nicotinic acetylcholine receptor and GABA receptor. Following reciprocal crosses, dose-response lines and dominance ratios indicated that spinosad resistance was incompletely dominant and there were no maternal effects. The results of backcross showed that spinosad resistance did not fit a single-gene hypothesis, suggesting that resistance was influenced by several genes.