Based on the effective-mass approximation and variational approach, excitonic optical properties are investigated theoretically in strained wurtzite (WZ) ZnO/MgxZn1-xO cylindrical quantum dots (QDs) for four diffe...Based on the effective-mass approximation and variational approach, excitonic optical properties are investigated theoretically in strained wurtzite (WZ) ZnO/MgxZn1-xO cylindrical quantum dots (QDs) for four different Mg compositions: x = 0.08, 0.14, 0.25, and 0.33, with considering a three-dimensional carrier confinement in QDs and a strong built-in electric field effect due to the piezoelectricity and spontaneous polarization. The ground-state exciton binding energy, the interband emission wavelength, and the radiative lifetime as functions of the QD structural parameters (height and radius) are calculated in detail The computations are performed in the case of finite band offset. Numerical results elucidate that Mg composition has of ZnO/MgxZn1-x 0 QDs. The ground-state exciton a significant influence on the exciton states and optical properties binding energy increases with increasing Mg composition and the increment tendency is more prominent for small height QDs. As Mg composition increases, the interband emission wavelength has a blue-shift if the dot height L 〈 3.5 nm, but the interband emission wavelength has a red-shift when L 〉 3.5 nm. Furthermore, the radiative lifetime increases rapidly with increasing Mg composition if the dot height L 〉 3 nm and the increment tendency is more prominent for large height QDs. The physical reason has been analyzed in depth.展开更多
Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl ...Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing.展开更多
Colloidal CdSe quantum dots(QDs)are promising materials for solar cells because of their simple preparation pro-cess and compatibility with flexible substrates.The QD radiative recombination lifetime has attracted eno...Colloidal CdSe quantum dots(QDs)are promising materials for solar cells because of their simple preparation pro-cess and compatibility with flexible substrates.The QD radiative recombination lifetime has attracted enormous attention as it affects the probability of photogenerated charges leaving the QDs and being collected at the battery electrodes.However,the scaling law for the exciton radiative lifetime in CdSe QDs is still a puzzle.This article presents a novel explanation that recon-ciles this controversy.Our calculations agree with the experimental measurements of all three divergent trends in a broadened energy window.Further,we proved that the exciton radiative lifetime is a consequence of the thermal average of decays for all thermally accessible exciton states.Each of the contradictory size-dependent patterns reflects this trend in a specific size range.As the optical band gap increases,the radiative lifetime decreases in larger QDs,increases in smaller QDs,and is weakly depend-ent on size in the intermediate energy region.This study addresses the inconsistencies in the scaling law of the exciton life-time and gives a unified interpretation over a widened framework.Moreover,it provides valuable guidance for carrier separa-tion in the thin film solar cell of CdSe QDs.展开更多
The 18 A-S states correlated to the lowest dissociation limit of SiTe were calculated by using a high-level multirefer-ence configuration interaction (MRCI) method, including scalar relativistic and spin-orbit coupl...The 18 A-S states correlated to the lowest dissociation limit of SiTe were calculated by using a high-level multirefer-ence configuration interaction (MRCI) method, including scalar relativistic and spin-orbit coupling effects. Based on the calculated potential energy curves, the spectroscopic constants of bound states were determined, which are well consistent with previous experimental results. The spin-orbit matrix elements between the A-S states were computed, which lead to an in-deoth understanding, of oerturbations on the electronic state a^3∏. Finally. the transition dioole moments of allowed transitionsA^1∏-X^1∑^+,E^1∑^+-X^1∑^+,a^3∏-d^3△,a^3∏-d^3△,a^∏-a′^3∑^+,a^3∏-e^3∑^-,and the radiative lifetimes of A^1∏,E^1∑^+,and a^3∏ were evaluated.展开更多
基金Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No. 11102100
文摘Based on the effective-mass approximation and variational approach, excitonic optical properties are investigated theoretically in strained wurtzite (WZ) ZnO/MgxZn1-xO cylindrical quantum dots (QDs) for four different Mg compositions: x = 0.08, 0.14, 0.25, and 0.33, with considering a three-dimensional carrier confinement in QDs and a strong built-in electric field effect due to the piezoelectricity and spontaneous polarization. The ground-state exciton binding energy, the interband emission wavelength, and the radiative lifetime as functions of the QD structural parameters (height and radius) are calculated in detail The computations are performed in the case of finite band offset. Numerical results elucidate that Mg composition has of ZnO/MgxZn1-x 0 QDs. The ground-state exciton a significant influence on the exciton states and optical properties binding energy increases with increasing Mg composition and the increment tendency is more prominent for small height QDs. As Mg composition increases, the interband emission wavelength has a blue-shift if the dot height L 〈 3.5 nm, but the interband emission wavelength has a red-shift when L 〉 3.5 nm. Furthermore, the radiative lifetime increases rapidly with increasing Mg composition if the dot height L 〉 3 nm and the increment tendency is more prominent for large height QDs. The physical reason has been analyzed in depth.
基金Project supported by the Research Foundation for Higher Level Talents of West Anhui University(Grant No.WGKQ2021005)。
文摘Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing.
基金supported by the National Key Research and Development Program of China under Grant No.2021YFB2800304.
文摘Colloidal CdSe quantum dots(QDs)are promising materials for solar cells because of their simple preparation pro-cess and compatibility with flexible substrates.The QD radiative recombination lifetime has attracted enormous attention as it affects the probability of photogenerated charges leaving the QDs and being collected at the battery electrodes.However,the scaling law for the exciton radiative lifetime in CdSe QDs is still a puzzle.This article presents a novel explanation that recon-ciles this controversy.Our calculations agree with the experimental measurements of all three divergent trends in a broadened energy window.Further,we proved that the exciton radiative lifetime is a consequence of the thermal average of decays for all thermally accessible exciton states.Each of the contradictory size-dependent patterns reflects this trend in a specific size range.As the optical band gap increases,the radiative lifetime decreases in larger QDs,increases in smaller QDs,and is weakly depend-ent on size in the intermediate energy region.This study addresses the inconsistencies in the scaling law of the exciton life-time and gives a unified interpretation over a widened framework.Moreover,it provides valuable guidance for carrier separa-tion in the thin film solar cell of CdSe QDs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11034003,11074095,and 11274140)the Natural Science Foundation of Heilongjiang Province,China(Grant No.F201335)the Scientific and Technological Research Foundation of Qiqihar,China(Grant No.GYGG-201209-1)
文摘The 18 A-S states correlated to the lowest dissociation limit of SiTe were calculated by using a high-level multirefer-ence configuration interaction (MRCI) method, including scalar relativistic and spin-orbit coupling effects. Based on the calculated potential energy curves, the spectroscopic constants of bound states were determined, which are well consistent with previous experimental results. The spin-orbit matrix elements between the A-S states were computed, which lead to an in-deoth understanding, of oerturbations on the electronic state a^3∏. Finally. the transition dioole moments of allowed transitionsA^1∏-X^1∑^+,E^1∑^+-X^1∑^+,a^3∏-d^3△,a^3∏-d^3△,a^∏-a′^3∑^+,a^3∏-e^3∑^-,and the radiative lifetimes of A^1∏,E^1∑^+,and a^3∏ were evaluated.