FeSiAl alloys ribbons synthesized by melt-quench were annealed in vacuum at 873 K for 60 rain. The flaky powders were prepared by milling the annealed ribbons for 70 h. After milling, the powders were heat treated at ...FeSiAl alloys ribbons synthesized by melt-quench were annealed in vacuum at 873 K for 60 rain. The flaky powders were prepared by milling the annealed ribbons for 70 h. After milling, the powders were heat treated at 573 K for 90 rain. The ordering degree of the powders lattice structure was analyzed by X-ray diffraction (XRD). The measurement of specific saturation magnetization was carried out by vibrating samples magnetometer (VSM). Complex permittivity and complex permeability in the frequency band of 0.5-18 GHz were measured with the vector network analyzer. The ordering degree of the superlattice structure increased from 0.2'7 to 0.49. Complex permittivity and complex permeability decreased with increasing Si content. After ordering, the specific saturation magnetization decreased from 134.2 to 85.0 A.m2.kg-1. For use in anti-EMI material, the total contents of Si and Al in FeSiAl alloys should be controlled at a low level.展开更多
The effects of Dy on the microstructure and magnetic properties of DyxCo50-xPt50 alloys were investigated. The XRD results indicate that all the alloys homogenized at 1000 ℃ contain only a single A 1 (fcc) phase, w...The effects of Dy on the microstructure and magnetic properties of DyxCo50-xPt50 alloys were investigated. The XRD results indicate that all the alloys homogenized at 1000 ℃ contain only a single A 1 (fcc) phase, while the alloys annealed at 675℃ consist of a hard-magnetic face-eentered-tetragonal (fct) phase and a magnetically soft face-centered-cube (fcc) phase. Maximum values for the coercivity and remanence ratio mr were achieved in DY0.4Co49.6Pt50 alloys annealed at 675 ℃ for 80 min. For the series of Dy Co50-xPt50 alloys annealed at 675 ℃ for 60 min, H decreases monotonically with increasing Dy concentration, but mr is first enhanced and then weakened,展开更多
The influence of grain size and ordering degree of the parent phase on the shape memory re- covery in a Cu-25.62Zn-3.97Al-0.0018B(wt-%)memory alloy is investigated.A mathematical relationship is set up between the rec...The influence of grain size and ordering degree of the parent phase on the shape memory re- covery in a Cu-25.62Zn-3.97Al-0.0018B(wt-%)memory alloy is investigated.A mathematical relationship is set up between the recovery ratio and ordering degree,probabili- ty of atoms at their ordered sites,grain size,the thickness of the grain boundary affected re- gions,the stress during deformation,as well as the critical shear stress.Shape memory effect reaches a maximum with varying grain size and increases linearly with increasing ordering parameter,which agrees well with experimental results.展开更多
The degree of ordering and ordered domain size in solid solution AlNi3 prepared by SHS have been deter-mined -with XRD. The reszilts indicate that the greater the form-ing pressure on the raw materials , the higher th...The degree of ordering and ordered domain size in solid solution AlNi3 prepared by SHS have been deter-mined -with XRD. The reszilts indicate that the greater the form-ing pressure on the raw materials , the higher the degree of or-dering,the larger the ordered domain size.展开更多
Electrical power network analysis and computation play an important role in the planning and operation of the power grid,and they are modeled mathematically as differential equations and network algebraic equations.Th...Electrical power network analysis and computation play an important role in the planning and operation of the power grid,and they are modeled mathematically as differential equations and network algebraic equations.The direct method based on Gaussian elimination theory can obtain analytical results.Two factors affect computing efficiency:the number of nonzero element fillings and the length of elimination tree.This article constructs mapping correspondence between eliminated tree nodes and quotient graph nodes through graph and quotient graph theories.The Approximate Minimum Degree(AMD)of quotient graph nodes and the length of the elimination tree nodes are composed to build an Approximate Minimum Degree and Minimum Length(AMDML)model.The quotient graph node with the minimum degree,which is also the minimum length of elimination tree node,is selected as the next ordering vector.Compared with AMD ordering method and other common methods,the proposed method further reduces the length of elimination tree without increasing the number of nonzero fillings;the length was decreased by about 10%compared with the AMD method.A testbed for experiment was built.The efficiency of the proposed method was evaluated based on different sizes of coefficient matrices of power flow cases.展开更多
文摘FeSiAl alloys ribbons synthesized by melt-quench were annealed in vacuum at 873 K for 60 rain. The flaky powders were prepared by milling the annealed ribbons for 70 h. After milling, the powders were heat treated at 573 K for 90 rain. The ordering degree of the powders lattice structure was analyzed by X-ray diffraction (XRD). The measurement of specific saturation magnetization was carried out by vibrating samples magnetometer (VSM). Complex permittivity and complex permeability in the frequency band of 0.5-18 GHz were measured with the vector network analyzer. The ordering degree of the superlattice structure increased from 0.2'7 to 0.49. Complex permittivity and complex permeability decreased with increasing Si content. After ordering, the specific saturation magnetization decreased from 134.2 to 85.0 A.m2.kg-1. For use in anti-EMI material, the total contents of Si and Al in FeSiAl alloys should be controlled at a low level.
基金Funded by the National Natural Science Foundation of China(No.51261004&50661002)the National Science foundation of Guangxi Province(2012GXNSFGA060002)
文摘The effects of Dy on the microstructure and magnetic properties of DyxCo50-xPt50 alloys were investigated. The XRD results indicate that all the alloys homogenized at 1000 ℃ contain only a single A 1 (fcc) phase, while the alloys annealed at 675℃ consist of a hard-magnetic face-eentered-tetragonal (fct) phase and a magnetically soft face-centered-cube (fcc) phase. Maximum values for the coercivity and remanence ratio mr were achieved in DY0.4Co49.6Pt50 alloys annealed at 675 ℃ for 80 min. For the series of Dy Co50-xPt50 alloys annealed at 675 ℃ for 60 min, H decreases monotonically with increasing Dy concentration, but mr is first enhanced and then weakened,
文摘The influence of grain size and ordering degree of the parent phase on the shape memory re- covery in a Cu-25.62Zn-3.97Al-0.0018B(wt-%)memory alloy is investigated.A mathematical relationship is set up between the recovery ratio and ordering degree,probabili- ty of atoms at their ordered sites,grain size,the thickness of the grain boundary affected re- gions,the stress during deformation,as well as the critical shear stress.Shape memory effect reaches a maximum with varying grain size and increases linearly with increasing ordering parameter,which agrees well with experimental results.
文摘The degree of ordering and ordered domain size in solid solution AlNi3 prepared by SHS have been deter-mined -with XRD. The reszilts indicate that the greater the form-ing pressure on the raw materials , the higher the degree of or-dering,the larger the ordered domain size.
基金supported in part by the National Key Basic Research and Development Program of China(No.2017YFE0132100)the Tsinghua-Toyota Research Fund(No.20203910016)the BNRist Program(No.BNR2020TD01009)。
文摘Electrical power network analysis and computation play an important role in the planning and operation of the power grid,and they are modeled mathematically as differential equations and network algebraic equations.The direct method based on Gaussian elimination theory can obtain analytical results.Two factors affect computing efficiency:the number of nonzero element fillings and the length of elimination tree.This article constructs mapping correspondence between eliminated tree nodes and quotient graph nodes through graph and quotient graph theories.The Approximate Minimum Degree(AMD)of quotient graph nodes and the length of the elimination tree nodes are composed to build an Approximate Minimum Degree and Minimum Length(AMDML)model.The quotient graph node with the minimum degree,which is also the minimum length of elimination tree node,is selected as the next ordering vector.Compared with AMD ordering method and other common methods,the proposed method further reduces the length of elimination tree without increasing the number of nonzero fillings;the length was decreased by about 10%compared with the AMD method.A testbed for experiment was built.The efficiency of the proposed method was evaluated based on different sizes of coefficient matrices of power flow cases.