Background: Limited research has focused on the effect of Lactobacillus on the intestinal toxicity of deoxynivalenol(DON).The present study was conducted to investigate the role of Lactobacillus plantarum(L.plantarum)...Background: Limited research has focused on the effect of Lactobacillus on the intestinal toxicity of deoxynivalenol(DON).The present study was conducted to investigate the role of Lactobacillus plantarum(L.plantarum) JM113 in protecting against the intestinal toxicity caused by DON.Methods: A total of 144 one-day-old healthy Arbor Acres broilers were randomly distributed into 3 treatments,including the CON(basal diet),the DON(extra 10 mg/kg deoxynivalenol),and the DL(extra 1 × 109 CFU/kg L.plantarum JM113 based on DON group) treatments.The growth performance,organ indexes,intestinal morphology,pancreatic digestive enzymes,intestinal secreted immunoglobulin A(sIgA),jejunal transcriptome,and intestinal microbiota were evaluated.Results: Compared with the CON and DL groups,the DON supplementation altered intestinal morphology,especially in duodenum and jejunum,where villi were shorter and crypts were deeper(P < 0.05).Meanwhile,the significantly decreased mRNA expression of jejunal claudin-1 and occludin(P < 0.05),ileal rBAT and jejunal GLUT1 of 21-day-old broilers(P < 0.05),as well as duodenal PepT1 and ileal rBAT of 42-day-old broilers were identified in the DON group.Moreover,supplementation with L.plantarum JM113 could increase duodenal expression of IL-10 and IL-12 of 21-dayold broilers,ileal s IgA of 42-day-old broilers,and the bursa of Fabricius index of 21-day-old broilers.Further jejunal transcriptome proved that the genes related to the intestinal absorption and metabolism were significantly reduced in the DON group but a significant increase when supplemented with extra L.plantarum JM113.Furthermore,the bacteria related to nutrient utilization,including the Proteobacteria,Escherichia,Cc-115(P < 0.05),Lactobacillus and Prevotella(P < 0.1) were all decreased in the DON group.By contrast,supplementation with L.plantarum JM113 increased the relative abundance of beneficial bacterium,including the Bacteroidetes,Roseburia,Anaerofustis,Anaerostipe,and Ruminococcus bromi(P < 0.05).Specifically,the increased abun展开更多
基金funded by the National Key R&D Program of China(2018YFD0500600 to Xin Yang)National Natural Science Foundation of China(No.31402095 to Xin Yang)+1 种基金the National Key R&D Program of China(2017YFD0500500 to Xiaojun Yang)the Program for Shaanxi Science&Technology(2017ZDXM-NY-087 to Xin Yang,2017TSCXL-NY-04-04 to Xiaojun Yang)
文摘Background: Limited research has focused on the effect of Lactobacillus on the intestinal toxicity of deoxynivalenol(DON).The present study was conducted to investigate the role of Lactobacillus plantarum(L.plantarum) JM113 in protecting against the intestinal toxicity caused by DON.Methods: A total of 144 one-day-old healthy Arbor Acres broilers were randomly distributed into 3 treatments,including the CON(basal diet),the DON(extra 10 mg/kg deoxynivalenol),and the DL(extra 1 × 109 CFU/kg L.plantarum JM113 based on DON group) treatments.The growth performance,organ indexes,intestinal morphology,pancreatic digestive enzymes,intestinal secreted immunoglobulin A(sIgA),jejunal transcriptome,and intestinal microbiota were evaluated.Results: Compared with the CON and DL groups,the DON supplementation altered intestinal morphology,especially in duodenum and jejunum,where villi were shorter and crypts were deeper(P < 0.05).Meanwhile,the significantly decreased mRNA expression of jejunal claudin-1 and occludin(P < 0.05),ileal rBAT and jejunal GLUT1 of 21-day-old broilers(P < 0.05),as well as duodenal PepT1 and ileal rBAT of 42-day-old broilers were identified in the DON group.Moreover,supplementation with L.plantarum JM113 could increase duodenal expression of IL-10 and IL-12 of 21-dayold broilers,ileal s IgA of 42-day-old broilers,and the bursa of Fabricius index of 21-day-old broilers.Further jejunal transcriptome proved that the genes related to the intestinal absorption and metabolism were significantly reduced in the DON group but a significant increase when supplemented with extra L.plantarum JM113.Furthermore,the bacteria related to nutrient utilization,including the Proteobacteria,Escherichia,Cc-115(P < 0.05),Lactobacillus and Prevotella(P < 0.1) were all decreased in the DON group.By contrast,supplementation with L.plantarum JM113 increased the relative abundance of beneficial bacterium,including the Bacteroidetes,Roseburia,Anaerofustis,Anaerostipe,and Ruminococcus bromi(P < 0.05).Specifically,the increased abun