The full Navier-Stokes-Fourier system with mixed boundary condition that describes the motion of shear-thinning and incompressible viscous fluid in a rotating multi-screw extruder is investigated. The viscosity is ass...The full Navier-Stokes-Fourier system with mixed boundary condition that describes the motion of shear-thinning and incompressible viscous fluid in a rotating multi-screw extruder is investigated. The viscosity is assumed to depend on the shear rate and the temperature. The global existence of suitable weak solutions is established. The fictitious domain method which consists in filling the moving rigid screws with the surrounding fluid and taking into account the boundary conditions on these bodies by introducing a well-chosen distribution of boundary forces is used.展开更多
In the scope of material science, it is well understood that mechanical behavior of a material is temperature dependent. The converse is also true and for specific loading cases contributes to a unique thermal failure...In the scope of material science, it is well understood that mechanical behavior of a material is temperature dependent. The converse is also true and for specific loading cases contributes to a unique thermal failure mechanism known as “heat explosion”. The goal for this paper is to improve the mathematical models for predicting heat explosion by using a specific case of the Fourier heat transfer system that focuses on thermoviscoelastic properties of materials. This is done by using a computational analysis to solve for an internal heat parameter that determines thermal failure at a critical value. This critical value is calculated under conditions either accounting for or negating the effect of heat dissipated by the material. This model is an improvement on existing models because it accounts for material specific properties and in doing so limits mathematical assumptions of the system. By limiting the assumptions in the conditions of the model, the model becomes more accurate and useful in regards to material design.展开更多
The present work emphasizes the significance of oscillatory mixed convection stratified fluid and heat transfer characteristics at different stations of non-conducting horizontally circular cylinder in the presence of...The present work emphasizes the significance of oscillatory mixed convection stratified fluid and heat transfer characteristics at different stations of non-conducting horizontally circular cylinder in the presence of thermally stratified medium.To remove the difficulties in illustrating the coupled PDE’s,the finite-difference scheme with efficient primitive-variable formulation is proposed to transform dimensionless equations.The numerical simulations of coupled non-dimensional equations are computed in terms velocity of fluid,temperature and magnetic field which are computed to examine the fluctuating components of skin friction,heat transfer and current density for various emerging parameters.The governing parameters namely,thermally stratification parameter𝑆𝑆𝑡𝑡,mixed-convection parameter𝜆𝜆,Prandtl number Pr,magnetic force parameter𝜉𝜉and magnetic-Prandtl number𝛾𝛾are displayed graphically at selected values for velocity and heat transfer mechanism.It is computed that heat transfer attains maximum amplitude and good variations in the presence of thermally stratified parameter at each position𝛼𝛼=𝜋𝜋6⁄,𝛼𝛼=𝜋𝜋3⁄and𝛼𝛼=𝜋𝜋around the surface of non-conducting horizontally cylinder.The velocity of fluid attains certain height at station𝛼𝛼=𝜋𝜋6⁄for higher value of stratification parameter.It is also found that the temperature gradient decreases with stratification parameter𝑆𝑆𝑡𝑡,but it increases after a certain distance𝑌𝑌from the cylinder.The novelty of the current work is that due to non-conducting phenomena the magnetic effects are strongly observed far from the surface but exact at the surface are zero for each position.展开更多
基金Supported by the National Natural Science Foundation of China(No.11671027,11601031,,11471321)
文摘The full Navier-Stokes-Fourier system with mixed boundary condition that describes the motion of shear-thinning and incompressible viscous fluid in a rotating multi-screw extruder is investigated. The viscosity is assumed to depend on the shear rate and the temperature. The global existence of suitable weak solutions is established. The fictitious domain method which consists in filling the moving rigid screws with the surrounding fluid and taking into account the boundary conditions on these bodies by introducing a well-chosen distribution of boundary forces is used.
文摘In the scope of material science, it is well understood that mechanical behavior of a material is temperature dependent. The converse is also true and for specific loading cases contributes to a unique thermal failure mechanism known as “heat explosion”. The goal for this paper is to improve the mathematical models for predicting heat explosion by using a specific case of the Fourier heat transfer system that focuses on thermoviscoelastic properties of materials. This is done by using a computational analysis to solve for an internal heat parameter that determines thermal failure at a critical value. This critical value is calculated under conditions either accounting for or negating the effect of heat dissipated by the material. This model is an improvement on existing models because it accounts for material specific properties and in doing so limits mathematical assumptions of the system. By limiting the assumptions in the conditions of the model, the model becomes more accurate and useful in regards to material design.
文摘The present work emphasizes the significance of oscillatory mixed convection stratified fluid and heat transfer characteristics at different stations of non-conducting horizontally circular cylinder in the presence of thermally stratified medium.To remove the difficulties in illustrating the coupled PDE’s,the finite-difference scheme with efficient primitive-variable formulation is proposed to transform dimensionless equations.The numerical simulations of coupled non-dimensional equations are computed in terms velocity of fluid,temperature and magnetic field which are computed to examine the fluctuating components of skin friction,heat transfer and current density for various emerging parameters.The governing parameters namely,thermally stratification parameter𝑆𝑆𝑡𝑡,mixed-convection parameter𝜆𝜆,Prandtl number Pr,magnetic force parameter𝜉𝜉and magnetic-Prandtl number𝛾𝛾are displayed graphically at selected values for velocity and heat transfer mechanism.It is computed that heat transfer attains maximum amplitude and good variations in the presence of thermally stratified parameter at each position𝛼𝛼=𝜋𝜋6⁄,𝛼𝛼=𝜋𝜋3⁄and𝛼𝛼=𝜋𝜋around the surface of non-conducting horizontally cylinder.The velocity of fluid attains certain height at station𝛼𝛼=𝜋𝜋6⁄for higher value of stratification parameter.It is also found that the temperature gradient decreases with stratification parameter𝑆𝑆𝑡𝑡,but it increases after a certain distance𝑌𝑌from the cylinder.The novelty of the current work is that due to non-conducting phenomena the magnetic effects are strongly observed far from the surface but exact at the surface are zero for each position.