The Atlantic Multidecadal Oscillation (AMO), the multidecadal variation of North Atlantic sea surface temperature (SST), exhibits an oscillation with a period of 65-80 years and an amplitude of 0.4℃. Observationa...The Atlantic Multidecadal Oscillation (AMO), the multidecadal variation of North Atlantic sea surface temperature (SST), exhibits an oscillation with a period of 65-80 years and an amplitude of 0.4℃. Observational composite analyses reveal that the warm phase AMO is linked to warmer winters in East China, with enhanced precipitation in the north of this region and reduced precipitation in the south, on multidecadal time scales. The pattern is reversed during the cold phase AMO. Whether the AMO acts as a forcing of the multidecadal winter climate of East China is explored by investigating the atmospheric response to warm AMO SST anomalies in a large ensemble of atmospheric general circulation model (AGCM) experiments. The results from three AGCMs are consistent and suggest that the AMO warmth favors warmer winters in East China. This influence is realized through inducing negative surface air pressure anomalies in the hemispheric-wide domain extending from the midlatitude North Atlantic to midlatitude Eurasia. These negative surface anomalies favor the weakening of the Mongolian Cold High, and thus induce a weaker East Asian Winter Monsoon.展开更多
A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive c...A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.展开更多
The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rai...The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.展开更多
The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physi...The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.展开更多
文摘The Atlantic Multidecadal Oscillation (AMO), the multidecadal variation of North Atlantic sea surface temperature (SST), exhibits an oscillation with a period of 65-80 years and an amplitude of 0.4℃. Observational composite analyses reveal that the warm phase AMO is linked to warmer winters in East China, with enhanced precipitation in the north of this region and reduced precipitation in the south, on multidecadal time scales. The pattern is reversed during the cold phase AMO. Whether the AMO acts as a forcing of the multidecadal winter climate of East China is explored by investigating the atmospheric response to warm AMO SST anomalies in a large ensemble of atmospheric general circulation model (AGCM) experiments. The results from three AGCMs are consistent and suggest that the AMO warmth favors warmer winters in East China. This influence is realized through inducing negative surface air pressure anomalies in the hemispheric-wide domain extending from the midlatitude North Atlantic to midlatitude Eurasia. These negative surface anomalies favor the weakening of the Mongolian Cold High, and thus induce a weaker East Asian Winter Monsoon.
基金supported jointly by the NOAA Arctic Research,CAS Project ZKCX2-SW-210the National Natural Science Foundation of China(Grant No.40275025)
文摘A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.
基金This work was jointly supported by National Key R&D Program of China(2018YFC1505806)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+1 种基金National Science Foundation of China(41875100)the China Meteorological Administration Innovation and Development Project(CXFZ2021Z033),and China Three Gorges Corporation(Grant No.0704181).
文摘The record-breaking mei-yu in the Yangtze-Huaihe River valley(YHRV)in 2020 was characterized by an early onset,a delayed retreat,a long duration,a wide meridional rainbelt,abundant precipitation,and frequent heavy rainstorm processes.It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation(QBWO)during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu,a northward shift and stagnation of the rainbelt,and the occurrence and persistence of heavy rainstorm processes.Correspondingly,during the mei-yu season,the monsoon circulation subsystems,including the western Pacific subtropical high(WPSH),the upper-level East Asian westerly jet,and the low-level southwesterly jet,experienced periodic oscillations linked with the QBWO.Most notably,the repeated establishment of a large southerly center,with relatively stable latitude,led to moisture convergence and ascent which was observed to develop repeatedly.This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes.Moreover,two blocking highs were present in the middle to high latitudes over Eurasia,and a trough along the East Asian coast was also active,which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths.The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV.The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH,which was observed to be favorable for excessive rainfall over YHRV.
基金Supported by the United States National Science Foundation(AGS-1106536)Office of Naval Research(N00014-1210450)+1 种基金China National Natural Science Foundation(41375095)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306032)
文摘The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.