A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex...A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex since Helmholtz proposed the concepts of vorticity tube/filament in 1858 and the vorticity-based methods can be categorized as the first generation of vortex identification methods.During the last three decades,a lot of vortex identification methods,including 0,A,and Aci criteria,have been proposed to overcome the problems associated with the vorticity-based methods.Most of these criteria are based on the Cauchy-Stokes decomposition and/or eigenvalues of the velocity gradient tensor and can be considered as the second generation of vortex identification methods.Starting from 2014,the Vortex and Turbulence Research Team at the University of Texas at Arlington(the UTA team)focus on the development of a new generation of vortex identification methods.The first fruit of this effort,a new Omega(/2)vortex identification method,which defined a vortex as a connected region where the vorticity overtakes the deformation,was published in 2016.In 2017 and 2018,a Liutex(previously called Rortex)vector was proposed to provide a mathematical definition of the local rigid rotation part of the fluid motion,including both the local rotational axis and the rotational strength.Liutex/Rortex is a new physical quantity with scalar,vector and tensor forms exactly representing the local rigid rotation of fluids.Meanwhile,a decomposition of the vorticity to a rotational part namely Liutex/Rortex and an anti-symmetric shear part(RS decomposition)was introduced in 2018,and a universal decomposition of the velocity gradient tensor to a rotation part(7?)and a non-rotation part(NR、was also given in 2018 as a counterpart of the traditional Cauchy-Stokes decomposition.Later in early 2019,a Liutex/Rortex based Omega method called Omega-Liutex,which combines the respective advantages of both Liutex/Rortex and Omega methods,was dev展开更多
A new vortex identification criterion called W-method is proposed based on the ideas that vorticity overtakes deformation in vortex.The comparison with other vortex identification methods like Q-criterion and λ_2-met...A new vortex identification criterion called W-method is proposed based on the ideas that vorticity overtakes deformation in vortex.The comparison with other vortex identification methods like Q-criterion and λ_2-method is conducted and the advantages of the new method can be summarized as follows:(1) the method is able to capture vortex well and very easy to perform;(2) the physical meaning of W is clear while the interpretations of iso-surface values of Q and λ_2 chosen to visualize vortices are obscure;(3)being different from Q and λ_2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, W is pretty universal and does not need much adjustment in different cases and the iso-surfaces of W=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated;(4) both strong and weak vortices can be captured well simultaneously while improper Q and λ_2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared;(5) W=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate W, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow,the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.展开更多
根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因。得到如...根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因。得到如下认知:夏季高原地面感热通量的气候均值为58 W m-2,近30年地面感热总体呈微弱的减小趋势。其中在1980年代初期和21世纪前10年的大部分时段,地面感热呈增大趋势,而中间时段呈波动式下降。地面感热具有准3年为主的周期振荡,1996年前后是其开始减弱的突变点。高原夏季地面潜热通量的气候均值为62 W m-2,近30年呈波动状变化并伴有增大趋势。地面潜热的周期振荡以准4年为主,地面潜热增大的突变始于2004年前后。夏季高原地面热源的气候均值为120 W m-2,其中地面感热与地面潜热对地面热源的贡献在夏季大致相当。地面热源总体呈幅度不大的减弱趋势,其中1980年代到1990年代末偏强,21世纪前6年明显偏弱,随后又转为偏强。地面热源亦呈准3年为主的周期振荡并在1997年前后发生由强转弱的突变。根据MICAPS天气图资料的识别和统计,近30来夏季高原低涡的生成频数整体呈现一定程度的线性减少趋势,低涡高发期主要集中在1980年代到1990年代中后期。低涡生成频数有准7年为主的周期振荡现象,自1990年代中期开始的低涡生成频数的减少态势在1998年前后发生了突变。夏季高原低涡生成频数与同期高原地面感热呈高度正相关,与地面潜热呈一定程度的负相关,但与同期地面热源仍呈较显著的正相关。因此,在气候尺度上,高原地面热源偏强特别是地面感热偏强的时期,对应高原低涡的多发期。本研究从气候统计的时间相关性角度揭示了高原地面加热作用对催生高原低涡乃至高原对流活动的重要性。展开更多
本文回顾了涡定义和涡识别方法的发展历史,着重介绍了作者UTA(University of Texas at Arlington)团队及其合作者在涡科学和湍流研究的一些最新学术创新成果。UTA团队发现了可以定量描述流体刚性转动部分的物理量——Liutex向量,其主要...本文回顾了涡定义和涡识别方法的发展历史,着重介绍了作者UTA(University of Texas at Arlington)团队及其合作者在涡科学和湍流研究的一些最新学术创新成果。UTA团队发现了可以定量描述流体刚性转动部分的物理量——Liutex向量,其主要思想是把流体刚性转动从流体运动中提取出来,进而用Liutex来定义和识别涡结构,并已在广泛应用中证明了其作为涡识别方法的优越性。基于Liutex向量可以进一步研究涡量分解、速度梯度张量分解、流体运动分解、湍流结构、湍流生成机理以及旋涡的科学识别,为流体运动学的发展开辟了广阔的研究空间。区别于第一代涡识别方法和第二代涡识别方法,Liutex是一个向量,其方向代表当地转轴,大小代表当地流体刚性旋转角速度的二倍。本文详细介绍了基于Liutex向量的第三代涡的定义和识别方法,包括Liutex等值面、Liutex-Omega等值面、Liutex向量线、Liutex涡核线、以及最新发现的中低雷诺数湍流边界层中的Liutex-5/3幂次相似律,其发现很大程度上扩大了传统湍流能谱幂次律的适用范围,对建立湍流模型具有重要意义。展开更多
Optical vortices,a type of structured beam with helical phase wavefronts and‘doughnut’-shaped intensity distributions,have been used to fabricate chiral structures in metals and spiral patterns in anisotropic polari...Optical vortices,a type of structured beam with helical phase wavefronts and‘doughnut’-shaped intensity distributions,have been used to fabricate chiral structures in metals and spiral patterns in anisotropic polarization-dependent azobenzene polymers.However,in isotropic polymers,the fabricated microstructures are typically confined to non-chiral cylindrical geometry due to the two-dimensional‘doughnut’-shaped intensity profile of the optical vortices.Here we develop a powerful strategy to realize chiral microstructures in isotropic material by coaxial interference of a vortex beam and a plane wave,which produces threedimensional(3D)spiral optical fields.These coaxial interference beams are generated by designing contrivable holograms consisting of an azimuthal phase and an equiphase loaded on a liquid-crystal spatial light modulator.In isotropic polymers,3D chiral microstructures are achieved under illumination using coaxial interference femtosecond laser beams with their chirality controlled by the topological charge.Our further investigation reveals that the spiral lobes and chirality are caused by interfering patterns and helical phase wavefronts,respectively.This technique is simple,stable and easy to perform,and it offers broad applications in optical tweezers,optical communications and fast metamaterial fabrication.展开更多
Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer.In the case of 3D trapping with a single beam,this is termed optical tweezers.Optical tweezers ...Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer.In the case of 3D trapping with a single beam,this is termed optical tweezers.Optical tweezers are a powerful and noninvasive tool for manipulating small objects,and have become indispensable in many fields,including physics,biology,soft condensed matter,among others.In the early days,optical trapping was typically accomplished with a single Gaussian beam.In recent years,we have witnessed rapid progress in the use of structured light beams with customized phase,amplitude,and polarization in optical trapping.Unusual beam properties,such as phase singularities on-axis and propagation invariant nature,have opened up novel capabilities to the study of micromanipulation in liquid,air,and vacuum.We summarize the recent advances in the field of optical trapping using structured light beams.展开更多
文摘A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex since Helmholtz proposed the concepts of vorticity tube/filament in 1858 and the vorticity-based methods can be categorized as the first generation of vortex identification methods.During the last three decades,a lot of vortex identification methods,including 0,A,and Aci criteria,have been proposed to overcome the problems associated with the vorticity-based methods.Most of these criteria are based on the Cauchy-Stokes decomposition and/or eigenvalues of the velocity gradient tensor and can be considered as the second generation of vortex identification methods.Starting from 2014,the Vortex and Turbulence Research Team at the University of Texas at Arlington(the UTA team)focus on the development of a new generation of vortex identification methods.The first fruit of this effort,a new Omega(/2)vortex identification method,which defined a vortex as a connected region where the vorticity overtakes the deformation,was published in 2016.In 2017 and 2018,a Liutex(previously called Rortex)vector was proposed to provide a mathematical definition of the local rigid rotation part of the fluid motion,including both the local rotational axis and the rotational strength.Liutex/Rortex is a new physical quantity with scalar,vector and tensor forms exactly representing the local rigid rotation of fluids.Meanwhile,a decomposition of the vorticity to a rotational part namely Liutex/Rortex and an anti-symmetric shear part(RS decomposition)was introduced in 2018,and a universal decomposition of the velocity gradient tensor to a rotation part(7?)and a non-rotation part(NR、was also given in 2018 as a counterpart of the traditional Cauchy-Stokes decomposition.Later in early 2019,a Liutex/Rortex based Omega method called Omega-Liutex,which combines the respective advantages of both Liutex/Rortex and Omega methods,was dev
基金supported by Air Force Office of Scientific Research (Grant No. FA9550-08-1-0201) supervised by Dr. John Schmisseur and then the Department of Mathematics at University of Texas at Arlington
文摘A new vortex identification criterion called W-method is proposed based on the ideas that vorticity overtakes deformation in vortex.The comparison with other vortex identification methods like Q-criterion and λ_2-method is conducted and the advantages of the new method can be summarized as follows:(1) the method is able to capture vortex well and very easy to perform;(2) the physical meaning of W is clear while the interpretations of iso-surface values of Q and λ_2 chosen to visualize vortices are obscure;(3)being different from Q and λ_2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, W is pretty universal and does not need much adjustment in different cases and the iso-surfaces of W=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated;(4) both strong and weak vortices can be captured well simultaneously while improper Q and λ_2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared;(5) W=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate W, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow,the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.
文摘根据NCEP/DOE再分析资料的地面感热通量和潜热通量以及MICAPS天气图资料识别的高原低涡资料集,研究了近30年来青藏高原夏季地面热源和高原低涡生成频数的气候学特征,分析了高原地面加热与低涡生成频数的时间相关性及其物理成因。得到如下认知:夏季高原地面感热通量的气候均值为58 W m-2,近30年地面感热总体呈微弱的减小趋势。其中在1980年代初期和21世纪前10年的大部分时段,地面感热呈增大趋势,而中间时段呈波动式下降。地面感热具有准3年为主的周期振荡,1996年前后是其开始减弱的突变点。高原夏季地面潜热通量的气候均值为62 W m-2,近30年呈波动状变化并伴有增大趋势。地面潜热的周期振荡以准4年为主,地面潜热增大的突变始于2004年前后。夏季高原地面热源的气候均值为120 W m-2,其中地面感热与地面潜热对地面热源的贡献在夏季大致相当。地面热源总体呈幅度不大的减弱趋势,其中1980年代到1990年代末偏强,21世纪前6年明显偏弱,随后又转为偏强。地面热源亦呈准3年为主的周期振荡并在1997年前后发生由强转弱的突变。根据MICAPS天气图资料的识别和统计,近30来夏季高原低涡的生成频数整体呈现一定程度的线性减少趋势,低涡高发期主要集中在1980年代到1990年代中后期。低涡生成频数有准7年为主的周期振荡现象,自1990年代中期开始的低涡生成频数的减少态势在1998年前后发生了突变。夏季高原低涡生成频数与同期高原地面感热呈高度正相关,与地面潜热呈一定程度的负相关,但与同期地面热源仍呈较显著的正相关。因此,在气候尺度上,高原地面热源偏强特别是地面感热偏强的时期,对应高原低涡的多发期。本研究从气候统计的时间相关性角度揭示了高原地面加热作用对催生高原低涡乃至高原对流活动的重要性。
文摘本文回顾了涡定义和涡识别方法的发展历史,着重介绍了作者UTA(University of Texas at Arlington)团队及其合作者在涡科学和湍流研究的一些最新学术创新成果。UTA团队发现了可以定量描述流体刚性转动部分的物理量——Liutex向量,其主要思想是把流体刚性转动从流体运动中提取出来,进而用Liutex来定义和识别涡结构,并已在广泛应用中证明了其作为涡识别方法的优越性。基于Liutex向量可以进一步研究涡量分解、速度梯度张量分解、流体运动分解、湍流结构、湍流生成机理以及旋涡的科学识别,为流体运动学的发展开辟了广阔的研究空间。区别于第一代涡识别方法和第二代涡识别方法,Liutex是一个向量,其方向代表当地转轴,大小代表当地流体刚性旋转角速度的二倍。本文详细介绍了基于Liutex向量的第三代涡的定义和识别方法,包括Liutex等值面、Liutex-Omega等值面、Liutex向量线、Liutex涡核线、以及最新发现的中低雷诺数湍流边界层中的Liutex-5/3幂次相似律,其发现很大程度上扩大了传统湍流能谱幂次律的适用范围,对建立湍流模型具有重要意义。
基金supported by National Natural Science Foundation of China(no.51675503,61475149,51405464,61675190 and 51605463)the Fundamental Research Funds for the Central Universities(no.WK2480000002)+2 种基金the China Postdoctoral Science Foundation(no.2016M590578 and 2016M602027)the Chinese Academy of Sciences Instrument Project(YZ201566)the‘Chinese Thousand Young Talents Program’.
文摘Optical vortices,a type of structured beam with helical phase wavefronts and‘doughnut’-shaped intensity distributions,have been used to fabricate chiral structures in metals and spiral patterns in anisotropic polarization-dependent azobenzene polymers.However,in isotropic polymers,the fabricated microstructures are typically confined to non-chiral cylindrical geometry due to the two-dimensional‘doughnut’-shaped intensity profile of the optical vortices.Here we develop a powerful strategy to realize chiral microstructures in isotropic material by coaxial interference of a vortex beam and a plane wave,which produces threedimensional(3D)spiral optical fields.These coaxial interference beams are generated by designing contrivable holograms consisting of an azimuthal phase and an equiphase loaded on a liquid-crystal spatial light modulator.In isotropic polymers,3D chiral microstructures are achieved under illumination using coaxial interference femtosecond laser beams with their chirality controlled by the topological charge.Our further investigation reveals that the spiral lobes and chirality are caused by interfering patterns and helical phase wavefronts,respectively.This technique is simple,stable and easy to perform,and it offers broad applications in optical tweezers,optical communications and fast metamaterial fabrication.
基金We thank Professor Kishan Dholakia for his instructive advice and help on the preparation of the manuscript.Y.Y thanks Dr.Leiming Zhou for the helpful discussion.This work was supported by the National Natural Science Foundation of China(11874102 and 61975047)the Sichuan Province Science and Technology Support Program(2020JDRC0006)the Fundamental Research Funds for the Central Universities(ZYGX2019J102).M.C.and Y.A.thank the UK Engineering and Physical Sciences Research Council for funding.
文摘Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer.In the case of 3D trapping with a single beam,this is termed optical tweezers.Optical tweezers are a powerful and noninvasive tool for manipulating small objects,and have become indispensable in many fields,including physics,biology,soft condensed matter,among others.In the early days,optical trapping was typically accomplished with a single Gaussian beam.In recent years,we have witnessed rapid progress in the use of structured light beams with customized phase,amplitude,and polarization in optical trapping.Unusual beam properties,such as phase singularities on-axis and propagation invariant nature,have opened up novel capabilities to the study of micromanipulation in liquid,air,and vacuum.We summarize the recent advances in the field of optical trapping using structured light beams.