Among eight components of avermectin, B1 fractions have the most effective antiparasitic activities and the lowest level of toxic side-effects and are used widely in veterinary and agricultural fields. In-traspecific ...Among eight components of avermectin, B1 fractions have the most effective antiparasitic activities and the lowest level of toxic side-effects and are used widely in veterinary and agricultural fields. In-traspecific protoplast fusion between two strains of Streptomyces avermitilis, one an avermectin high producer (strain 76-05) and the other a genetically engineered strain containing the mutations aveDˉ and olmAˉ (strain 73-12) was performed for enhancement and selective production of avermectin B in the absence of oligomycin. Two recombinant strains (F23 and F29) were isolated and characterized with regards to the parental merits. F23 and F29 produced only the four avermectin B components with high yield and produced no oligomycin. The avermectin production of F23 and F29 was about 84.20% and 103.45% of the parental strain 76-05, respectively, and increased about 2.66-fold and 3.50-fold, re-spectively, compared to that of parental strain 73-12. F23 and F29 were genetically stable prototrophic recombinants and F29 was quite tolerant of fermentation conditions compared to avermectin high producer parental strain 76-05. The ability to produce avermectin B with high yield without the produc-tion of other avermectin components and oligomycin will make F23 and F29 useful strains for aver-mectin production. Strain F29's tolerance of fermentation conditions will also make it suitable for in-dustrial applications.展开更多
Gene deletion vector pXL05(pKC1139∷△olmA1 +△olmA4) was used to disrupt oligomycin PKS en-coding genes (olmA) in Streptomyces avermitilis CZ8-73, the producer of anthelmintic avermectins B and the cell growth inhibi...Gene deletion vector pXL05(pKC1139∷△olmA1 +△olmA4) was used to disrupt oligomycin PKS en-coding genes (olmA) in Streptomyces avermitilis CZ8-73, the producer of anthelmintic avermectins B and the cell growth inhibitor oligomycin. olmA gene cluster in the chromosome was displaced by deletion allele on the plasmid via double crossover. Four of disruptants were confirmed by Southern blotting. Shaking flask experiments and HPLC analyses showed that the four mutants no longer produced the toxic oligomycin, but only made four components of avermectins B, which were avermectin B1a, B1b, B2a, B2b. The yields of avermectins B in these mutants were separately equal to those in CZ8-73. This revealed that olmA genes deletion did not affect the biosynthesis of avermectins. The deletion mu-tants were proved to be genetically stable, and thus might be promising strains in industrial production of avermectins B.展开更多
基金Supported by National Basic Research Project (Grant No. 2003CB114205)Key Technologies R&D Programme (Grant No. 2004BA713B02-03)
文摘Among eight components of avermectin, B1 fractions have the most effective antiparasitic activities and the lowest level of toxic side-effects and are used widely in veterinary and agricultural fields. In-traspecific protoplast fusion between two strains of Streptomyces avermitilis, one an avermectin high producer (strain 76-05) and the other a genetically engineered strain containing the mutations aveDˉ and olmAˉ (strain 73-12) was performed for enhancement and selective production of avermectin B in the absence of oligomycin. Two recombinant strains (F23 and F29) were isolated and characterized with regards to the parental merits. F23 and F29 produced only the four avermectin B components with high yield and produced no oligomycin. The avermectin production of F23 and F29 was about 84.20% and 103.45% of the parental strain 76-05, respectively, and increased about 2.66-fold and 3.50-fold, re-spectively, compared to that of parental strain 73-12. F23 and F29 were genetically stable prototrophic recombinants and F29 was quite tolerant of fermentation conditions compared to avermectin high producer parental strain 76-05. The ability to produce avermectin B with high yield without the produc-tion of other avermectin components and oligomycin will make F23 and F29 useful strains for aver-mectin production. Strain F29's tolerance of fermentation conditions will also make it suitable for in-dustrial applications.
文摘Gene deletion vector pXL05(pKC1139∷△olmA1 +△olmA4) was used to disrupt oligomycin PKS en-coding genes (olmA) in Streptomyces avermitilis CZ8-73, the producer of anthelmintic avermectins B and the cell growth inhibitor oligomycin. olmA gene cluster in the chromosome was displaced by deletion allele on the plasmid via double crossover. Four of disruptants were confirmed by Southern blotting. Shaking flask experiments and HPLC analyses showed that the four mutants no longer produced the toxic oligomycin, but only made four components of avermectins B, which were avermectin B1a, B1b, B2a, B2b. The yields of avermectins B in these mutants were separately equal to those in CZ8-73. This revealed that olmA genes deletion did not affect the biosynthesis of avermectins. The deletion mu-tants were proved to be genetically stable, and thus might be promising strains in industrial production of avermectins B.