Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural m...Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural materials, is well known for high specific strength and good corrosion resistance. But the poor laser formability of aluminum alloy restricts its application. There are problems such as limited processable materials, immature process conditions and metallurgical defects on SLM processing aluminum alloys. Some efforts have been made to solve the above problems. This paper discusses the current research status both related to the scientific understanding and technology applications. The paper begins with a brief introduction of basic concepts of aluminum alloys and technology characterization of laser selective melting. In addition, solidification theory of SLM process and formation mechanism of metallurgical defects are discussed. Then, the current research status of microstructure, properties and heat treatment of SLM processing aluminum alloys is systematically reviewed respectively. Lastly, a future outlook is given at the end of this review paper.展开更多
Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation disp...Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation display the composites which are macroscopically homogeneous without porosity. The investigation further reveals that the SiC/Al composites possess low density (2.94 g/cm^3), high elastic modulus (220 GPa), prominent thermal management function as a result of low coefficient of thermal expansion (8 × 10^4 K^-1) and high thermal conductivity (235 W/(m.K)) as well as unique preventability of resonance vibration. By adopting a series of developed techniques, the multi-functional SiC/Al composites have managed to be made into near-net-shape parts. Many kinds of precision components of space-based optomechanical structures and airborne optoelectronic platform have been turned out. Of them, several typical products are being under test in practices.展开更多
Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition...Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of- 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.展开更多
基金sponsored by National Key Research and Development Program "Additive Manufacturing and Laser Manufacturing" (No. 2016YFB1100101)Natural and Science Foundation of China (Grant Nos. 51775208, 51505166)+4 种基金Hubei Science Fund for Distinguished Young Scholars (No. 0216110085)Wuhan Morning Light Plan of Youth Science and Technology (No. 0216110066)Graduates’ Innovation Fund, Huazhong University of Science and Technology (No. 5003110027)Fundamental Research Funds for the Central University (No. 2017JYCXJJ004)the Academic frontier youth team at Huazhong University of Science and Technology (HUST)
文摘Selective laser melting(SLM) is an attractive rapid prototyping technology for the fabrication of metallic components with complex structure and high performance. Aluminum alloy, one of the most pervasive structural materials, is well known for high specific strength and good corrosion resistance. But the poor laser formability of aluminum alloy restricts its application. There are problems such as limited processable materials, immature process conditions and metallurgical defects on SLM processing aluminum alloys. Some efforts have been made to solve the above problems. This paper discusses the current research status both related to the scientific understanding and technology applications. The paper begins with a brief introduction of basic concepts of aluminum alloys and technology characterization of laser selective melting. In addition, solidification theory of SLM process and formation mechanism of metallurgical defects are discussed. Then, the current research status of microstructure, properties and heat treatment of SLM processing aluminum alloys is systematically reviewed respectively. Lastly, a future outlook is given at the end of this review paper.
基金Foundation items: High-technology Research and Development Programme of China (2007AA03Z544) Aeronautical Science Foundation of China (20075221001)
文摘Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation display the composites which are macroscopically homogeneous without porosity. The investigation further reveals that the SiC/Al composites possess low density (2.94 g/cm^3), high elastic modulus (220 GPa), prominent thermal management function as a result of low coefficient of thermal expansion (8 × 10^4 K^-1) and high thermal conductivity (235 W/(m.K)) as well as unique preventability of resonance vibration. By adopting a series of developed techniques, the multi-functional SiC/Al composites have managed to be made into near-net-shape parts. Many kinds of precision components of space-based optomechanical structures and airborne optoelectronic platform have been turned out. Of them, several typical products are being under test in practices.
文摘Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of- 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.