In January 2013, a long-lasting episode of severe haze occurred in central and eastern China, and it attracted attention from all sectors of society. The process and evolution of haze pollution episodes were observed ...In January 2013, a long-lasting episode of severe haze occurred in central and eastern China, and it attracted attention from all sectors of society. The process and evolution of haze pollution episodes were observed by the "Forming Mechanism and Con- trol Strategies of Haze in China" group using an intensive aerosol and trace gases campaign that simultaneously obtained data at 11 ground-based observing sites in the CARE-China network. The characteristics and formation mechanism of haze pollu- tion episodes were discussed. Five haze pollution episodes were identified in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) area; the two most severe episodes occurred during 9-15 January and 25-31 January. During these two haze pollution episodes, the maximum hourly PMz5 mass concentrations in Beijing were 680 and 530 ~tg m-3, respectively. The process and evolution of haze pollution episodes in other major cities in the Jing-Jin-Ji area, such as Shijiazhuang and Tianjin were almost the same as those observed in Beijing. The external cause of the severe haze episodes was the unusual atmospheric circulation, the depres- sion of strong cold air activities and the very unfavorable dispersion due to geographical and meteorological conditions. How- ever, the internal cause was the quick secondary transformation of primary gaseous pollutants to secondary aerosols, which contributed to the "explosive growth" and "sustained growth" of PM2.5. Particularly, the abnormally high amount of nitric ox- ide (NOx) in the haze episodes, produced by fossil fuel combustion and vehicle emissions, played a direct or indirect role in the quick secondary transformation of coal-burning sulphur dioxide (SO2) to sulphate aerosols. Furthermore, gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of fine particles, which can change the particle's size and chemical composition. Consequently, the proportion of secondary inorganic ions, such as sulphate and nitrate, gradually incr展开更多
This article analyzed the control progress and current status of air quality,identified the major air pollution issues and challenges in future,proposed the long-term air pollution control targets,and suggested the op...This article analyzed the control progress and current status of air quality,identified the major air pollution issues and challenges in future,proposed the long-term air pollution control targets,and suggested the options for better air quality in China.With the continuing growth of economy in the next 10–15 years,China will face a more severe situation of energy consumption,electricity generation and vehicle population leading to increase in multiple pollutant emissions.Controlling regional air pollution especially fine particles and ozone,as well as lowering carbon emissions from fossil fuel consumption will be a big challenge for the country.To protect public health and the eco-system,the ambient air quality in all Chinese cities shall attain the national ambient air quality standards (NAAQS) and ambient air quality guideline values set by the World Health Organization (WHO).To achieve the air quality targets,the emissions of SO 2,NOx,PM 10,and volatile organic compounds (VOC) should decrease by 60%,40%,50%,and 40%,respectively,on the basis of that in 2005.A comprehensive control policy focusing on multiple pollutants and emission sources at both the local and regional levels was proposed to mitigate the regional air pollution issue in China.The options include development of clean energy resources,promotion of clean and efficient coal use,enhancement of vehicle pollution control,implementation of synchronous control of multiple pollutants including SO 2,NOx,VOC,and PM emissions,joint prevention and control of regional air pollution,and application of climate friendly air pollution control measures.展开更多
Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface a...Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China's station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China's most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.展开更多
The variations of mass concentrations of PM2.5, PMl0, SO2, NO2, CO, and 03 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31,201...The variations of mass concentrations of PM2.5, PMl0, SO2, NO2, CO, and 03 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31,2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.s with NO2: r = 0.256-0.688, mean r = 0,498:PM10 with NO2: r = 0.169-0.713, mean r=0.493; PM2.5 with SO2: r=0.232-0.693, mean r=0.449; PM10 with SO2: r=0.131-0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156-0.721, mean r = 0.437; PMl0: r= 0.06-0.67, mean r= 0.380). The correlation between PMs and 03 was either weak or uncorrelated (PM2.s: r= -0,35 to 0.089, mean r= -0.164; PM10: r= -0.279 to 0.078, mean r= -0.127), except in Haikou (PM2.5: r=0.500; PM10: r=0,509).展开更多
To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr...To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.展开更多
The climate change in China shows a considerable similarity to the global change, though there still exist some significant differences between them. In the context of the global warming, the annual mean surface air t...The climate change in China shows a considerable similarity to the global change, though there still exist some significant differences between them. In the context of the global warming, the annual mean surface air temperature in the country as a whole has significantly increased for the past 50 years and 100 years, with the range of temperature increase slightly greater than that in the globe. The change in precipitation trends for the last 50 and 100 years was not significant, but since 1956 it has assumed a weak increasing trend. The frequency and intensity of main extreme weather and climate events have also undergone a significant change. The researches show that the atmospheric CO2 concentration in China has continuously increased and the sum of positive radiative forcings produced by greenhouse gases is probably responsible for the country-wide climate warming for the past 100 years, especially for the past 50 years. The projections of climate change for the 21st century using global and regional climate models indicate that, in the future 20-100 years, the surface air temperature will continue to increase and the annual precipitation also has an increasing trend for most parts of the country.展开更多
Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
基金supported by the Chinese Academy of Sciences Strategic Priority Research Program(Grant Nos.XDB05020000 and XDA05100100)the National Natural Science Foundation of China(Grant Nos.41230642 and 41021004)
文摘In January 2013, a long-lasting episode of severe haze occurred in central and eastern China, and it attracted attention from all sectors of society. The process and evolution of haze pollution episodes were observed by the "Forming Mechanism and Con- trol Strategies of Haze in China" group using an intensive aerosol and trace gases campaign that simultaneously obtained data at 11 ground-based observing sites in the CARE-China network. The characteristics and formation mechanism of haze pollu- tion episodes were discussed. Five haze pollution episodes were identified in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) area; the two most severe episodes occurred during 9-15 January and 25-31 January. During these two haze pollution episodes, the maximum hourly PMz5 mass concentrations in Beijing were 680 and 530 ~tg m-3, respectively. The process and evolution of haze pollution episodes in other major cities in the Jing-Jin-Ji area, such as Shijiazhuang and Tianjin were almost the same as those observed in Beijing. The external cause of the severe haze episodes was the unusual atmospheric circulation, the depres- sion of strong cold air activities and the very unfavorable dispersion due to geographical and meteorological conditions. How- ever, the internal cause was the quick secondary transformation of primary gaseous pollutants to secondary aerosols, which contributed to the "explosive growth" and "sustained growth" of PM2.5. Particularly, the abnormally high amount of nitric ox- ide (NOx) in the haze episodes, produced by fossil fuel combustion and vehicle emissions, played a direct or indirect role in the quick secondary transformation of coal-burning sulphur dioxide (SO2) to sulphate aerosols. Furthermore, gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of fine particles, which can change the particle's size and chemical composition. Consequently, the proportion of secondary inorganic ions, such as sulphate and nitrate, gradually incr
基金supported by the MEP’s Special Funds for Research on Public Welfares (No. 201009001)Chinese Academy of Engineering
文摘This article analyzed the control progress and current status of air quality,identified the major air pollution issues and challenges in future,proposed the long-term air pollution control targets,and suggested the options for better air quality in China.With the continuing growth of economy in the next 10–15 years,China will face a more severe situation of energy consumption,electricity generation and vehicle population leading to increase in multiple pollutant emissions.Controlling regional air pollution especially fine particles and ozone,as well as lowering carbon emissions from fossil fuel consumption will be a big challenge for the country.To protect public health and the eco-system,the ambient air quality in all Chinese cities shall attain the national ambient air quality standards (NAAQS) and ambient air quality guideline values set by the World Health Organization (WHO).To achieve the air quality targets,the emissions of SO 2,NOx,PM 10,and volatile organic compounds (VOC) should decrease by 60%,40%,50%,and 40%,respectively,on the basis of that in 2005.A comprehensive control policy focusing on multiple pollutants and emission sources at both the local and regional levels was proposed to mitigate the regional air pollution issue in China.The options include development of clean energy resources,promotion of clean and efficient coal use,enhancement of vehicle pollution control,implementation of synchronous control of multiple pollutants including SO 2,NOx,VOC,and PM emissions,joint prevention and control of regional air pollution,and application of climate friendly air pollution control measures.
文摘Adopting the Easterling-Peterson (EP) techniques and considering the reality of Chinese meteorological observations, this paper designed several tests and tested for inhomogeneities in all Chinese historical surface air temperature series from 1951 to 2001. The result shows that the time series have been widely impacted by inhomogeneities resulting from the relocation of stations and changes in local environment such as urbanization or some other factors. Among these factors, station relocations caused the largest magnitude of abrupt changes in the time series, and other factors also resulted in inhomogeneities to some extent. According to the amplitude of change of the difference series and the monthly distribution features of surface air temperatures, discontinuities identified by applying both the E-P technique and supported by China's station history records, or by comparison with other approaches, have been adjusted. Based on the above processing, the most significant temporal inhomogeneities were eliminated, and China's most homogeneous surface air temperature series has thus been created. Results show that the inhomogeneity testing captured well the most important change of the stations, and the adjusted dataset is more reliable than ever. This suggests that the adjusted temperature dataset has great value of decreasing the uncertaities in the study of observed climate change in China.
基金funded by the Tsinghua National Laboratory for Information Science and Technology(TNList) Cross-discipline Foundationthe special fund of the Key Laboratory of Eco Planning & Green Building,Ministry of Education(Tsinghua University), China
文摘The variations of mass concentrations of PM2.5, PMl0, SO2, NO2, CO, and 03 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31,2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.s with NO2: r = 0.256-0.688, mean r = 0,498:PM10 with NO2: r = 0.169-0.713, mean r=0.493; PM2.5 with SO2: r=0.232-0.693, mean r=0.449; PM10 with SO2: r=0.131-0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156-0.721, mean r = 0.437; PMl0: r= 0.06-0.67, mean r= 0.380). The correlation between PMs and 03 was either weak or uncorrelated (PM2.s: r= -0,35 to 0.089, mean r= -0.164; PM10: r= -0.279 to 0.078, mean r= -0.127), except in Haikou (PM2.5: r=0.500; PM10: r=0,509).
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.
文摘The climate change in China shows a considerable similarity to the global change, though there still exist some significant differences between them. In the context of the global warming, the annual mean surface air temperature in the country as a whole has significantly increased for the past 50 years and 100 years, with the range of temperature increase slightly greater than that in the globe. The change in precipitation trends for the last 50 and 100 years was not significant, but since 1956 it has assumed a weak increasing trend. The frequency and intensity of main extreme weather and climate events have also undergone a significant change. The researches show that the atmospheric CO2 concentration in China has continuously increased and the sum of positive radiative forcings produced by greenhouse gases is probably responsible for the country-wide climate warming for the past 100 years, especially for the past 50 years. The projections of climate change for the 21st century using global and regional climate models indicate that, in the future 20-100 years, the surface air temperature will continue to increase and the annual precipitation also has an increasing trend for most parts of the country.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.