Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for ...Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for classification.The process of feature extraction depends on the experimenters’experience,and the classification rate of the shallow diagnostic model does not achieve satisfactory results.In view of these problems,this paper proposes a method of converting raw signals into twodimensional images.This method can extract the features of the converted two-dimensional images and eliminate the impact of expert’s experience on the feature extraction process.And it follows by proposing an intelligent diagnosis algorithm based on Convolution Neural Network(CNN),which can automatically accomplish the process of the feature extraction and fault diagnosis.The effect of this method is verified by bearing data.The influence of different sample sizes and different load conditions on the diagnostic capability of this method is analyzed.The results show that the proposed method is effective and can meet the timeliness requirements of fault diagnosis.展开更多
The exsolution of clinopyroxene and rutile in coarse-grain garnet is found in the gneissic K-feldspar(-bearing) garnet clinopyroxenite from Yinggelisayi in the Altyn Tagh, NW China. The maximum content of the exsolved...The exsolution of clinopyroxene and rutile in coarse-grain garnet is found in the gneissic K-feldspar(-bearing) garnet clinopyroxenite from Yinggelisayi in the Altyn Tagh, NW China. The maximum content of the exsolved clinopyroxene in the garnet is up to >5% by volume. The reconstructed precursor garnet (Grt1) before exsolution has a maximum Si content of 3.061 per formula uint, being of supersilicic or majoritic garnet. The peak-stage metamorphic pressure of >7 GPa is estimated using the geobarometer for volume percentage of exsolved pyroxene in garnet and the Si-(Al+Cr) geobarometer for majoritic garnet, and the temperature of about 1000℃ using the ternary alkali-feldspar geothermometer and the experimental data of ilmen- ite-magnetite solid solution. The protoliths of the rocks are intra-plate basic and intermediate ig- neous rocks, of which the geochemical features indicate that they are probably the products of the evolution of basic magma deriving from the continental lithosphere mantle. The rocks are in outcrops associated with ultrahigh pressure garnet-bearing lherzolite and ultrahigh pressure garnet granitoid gneiss. All of these data suggest that the ultrahigh pressure metamorphic rocks in the Altyn Tagh are the products of deep-subduction of the continental crust, and such deep- subduction probably reaches to >200 km in depth. This may provide new evidence for further discussion of the dynamic mechanism of the formation and evolvement of the Altyn Tagh and the other collision orogenic belts in western China.展开更多
Bearings are the most important component of nearly all mechanical equipment, as they guarantee the steady running of the equipment, which is especially important for high-end equipment such as highspeed trains and sh...Bearings are the most important component of nearly all mechanical equipment, as they guarantee the steady running of the equipment, which is especially important for high-end equipment such as highspeed trains and shield tunneling machines. Requirements regarding the quality of bearings are increasing with the rapid development in technology. A country’s bearings manufacturing level directly reflects the level of that country’s steel metallurgy and machinery manufacturing. The performance of the bearing steel is the critical factor that determines the quality of a bearing. The development of new bearing steel with higher performance is the ambition of material researchers and the expectation of the manufacturing industry. Many famous bearing manufacturing enterprises are competing to develop the new generation of bearing steel. Nanostructured bainitic bearing steel (NBBS), which is a newly developed bearing steel, not only possesses high strength and toughness, but also exhibits excellent wear resistance and rolling contact fatigue (RCF) resistance. In recent years, relevant achievements in NBBS in China have led to significant progress in this field. NBBS was first used in China to manufacture large bearings for wind turbines and heavy-duty bearings, with excellent performance. As a result, NBBS and its corresponding heat-treatment process have been included in the national and industry standards for the first time. The bearing industry considers the exploitation of NBBS to be epoch-making, and has termed this kind of bearing as the second generation of bainitic bearing. In this paper, the development of NBBS is reviewed in detail, including its advantages and disadvantages. Further research directions for NBBS are also proposed.展开更多
High-carbon chromium bearing steels with different rare earth (RE) contents were prepared to investigate the effects of RE on inclusions and impact toughness by different techniques. The results showed that RE additio...High-carbon chromium bearing steels with different rare earth (RE) contents were prepared to investigate the effects of RE on inclusions and impact toughness by different techniques. The results showed that RE addition could modify irregular Al2O3 and MnS into regular RE inclusions. With the increase of RE content, the reaction sequence of RE and potential inclusion forming elements should be O, S, As, P and C successively. RE inclusions containing C might precipitate in molten steel and solid state, but the precipitation tem perature was significantly higher than that of carbides in high-carbon chromium bearing steel. For experim ental bearing steels, the volume fraction of inclusions increased steadily with the increase of RE content, but smaller and more dispersed inclusions could be obtained by 0.018% RE content compared with bearing steel without RE, whereas the continuous increase of RE content led to an increasing trend for inclusion size and a gradual deterioration for inclusion distribution. RE addition could improve the transverse impact toughness and isotropy of bearing steel, and for modified highcarbon chrom ium bearing steel by RE alloying, the increase of RE content continuously increased both transverse and longitudinal im pact toughness until excessive RE addition.展开更多
基金co-supported by the National Natural Science Foundation of China(No.51775452)Fundamental Research Funds for the Central Universities,China(Nos.2682019CX35 and 2018GF02)Planning Project of Science&Technology Department of Sichuan Province,China(No.2019YFG0353).
文摘Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for classification.The process of feature extraction depends on the experimenters’experience,and the classification rate of the shallow diagnostic model does not achieve satisfactory results.In view of these problems,this paper proposes a method of converting raw signals into twodimensional images.This method can extract the features of the converted two-dimensional images and eliminate the impact of expert’s experience on the feature extraction process.And it follows by proposing an intelligent diagnosis algorithm based on Convolution Neural Network(CNN),which can automatically accomplish the process of the feature extraction and fault diagnosis.The effect of this method is verified by bearing data.The influence of different sample sizes and different load conditions on the diagnostic capability of this method is analyzed.The results show that the proposed method is effective and can meet the timeliness requirements of fault diagnosis.
基金the National Key Basic Research Program of China(Grant No. 1999075508) the National Natural Science Foundation of China(Grant Nos.40372088,49972063 , 140032010-c)+1 种基金the Cadreman Teacher Foundation of the Ministry of Education of China (Grant No. 40133020) the Open Foundation of the Laboratory of Orogen and Basin of the Ministry of Education of Peking University.
文摘The exsolution of clinopyroxene and rutile in coarse-grain garnet is found in the gneissic K-feldspar(-bearing) garnet clinopyroxenite from Yinggelisayi in the Altyn Tagh, NW China. The maximum content of the exsolved clinopyroxene in the garnet is up to >5% by volume. The reconstructed precursor garnet (Grt1) before exsolution has a maximum Si content of 3.061 per formula uint, being of supersilicic or majoritic garnet. The peak-stage metamorphic pressure of >7 GPa is estimated using the geobarometer for volume percentage of exsolved pyroxene in garnet and the Si-(Al+Cr) geobarometer for majoritic garnet, and the temperature of about 1000℃ using the ternary alkali-feldspar geothermometer and the experimental data of ilmen- ite-magnetite solid solution. The protoliths of the rocks are intra-plate basic and intermediate ig- neous rocks, of which the geochemical features indicate that they are probably the products of the evolution of basic magma deriving from the continental lithosphere mantle. The rocks are in outcrops associated with ultrahigh pressure garnet-bearing lherzolite and ultrahigh pressure garnet granitoid gneiss. All of these data suggest that the ultrahigh pressure metamorphic rocks in the Altyn Tagh are the products of deep-subduction of the continental crust, and such deep- subduction probably reaches to >200 km in depth. This may provide new evidence for further discussion of the dynamic mechanism of the formation and evolvement of the Altyn Tagh and the other collision orogenic belts in western China.
基金the Natural Science Foundation of China (51831008 and 51471146)the National High Technology Research and Development Program of China (2012AA03A504)+2 种基金the National Science Foundation for Distinguished Young Scholars of China (50925522)the China Postdoctoral Science Foundation (2018M631762)the Youth Talent Projects of Colleges in Hebei Province (BJ2018056).
文摘Bearings are the most important component of nearly all mechanical equipment, as they guarantee the steady running of the equipment, which is especially important for high-end equipment such as highspeed trains and shield tunneling machines. Requirements regarding the quality of bearings are increasing with the rapid development in technology. A country’s bearings manufacturing level directly reflects the level of that country’s steel metallurgy and machinery manufacturing. The performance of the bearing steel is the critical factor that determines the quality of a bearing. The development of new bearing steel with higher performance is the ambition of material researchers and the expectation of the manufacturing industry. Many famous bearing manufacturing enterprises are competing to develop the new generation of bearing steel. Nanostructured bainitic bearing steel (NBBS), which is a newly developed bearing steel, not only possesses high strength and toughness, but also exhibits excellent wear resistance and rolling contact fatigue (RCF) resistance. In recent years, relevant achievements in NBBS in China have led to significant progress in this field. NBBS was first used in China to manufacture large bearings for wind turbines and heavy-duty bearings, with excellent performance. As a result, NBBS and its corresponding heat-treatment process have been included in the national and industry standards for the first time. The bearing industry considers the exploitation of NBBS to be epoch-making, and has termed this kind of bearing as the second generation of bainitic bearing. In this paper, the development of NBBS is reviewed in detail, including its advantages and disadvantages. Further research directions for NBBS are also proposed.
基金financially supported by the National Natural Science Foundation of China (Nos. U1508215 and U1708252)the National Key Research and Development Program (No. 2016YFB0300401)
文摘High-carbon chromium bearing steels with different rare earth (RE) contents were prepared to investigate the effects of RE on inclusions and impact toughness by different techniques. The results showed that RE addition could modify irregular Al2O3 and MnS into regular RE inclusions. With the increase of RE content, the reaction sequence of RE and potential inclusion forming elements should be O, S, As, P and C successively. RE inclusions containing C might precipitate in molten steel and solid state, but the precipitation tem perature was significantly higher than that of carbides in high-carbon chromium bearing steel. For experim ental bearing steels, the volume fraction of inclusions increased steadily with the increase of RE content, but smaller and more dispersed inclusions could be obtained by 0.018% RE content compared with bearing steel without RE, whereas the continuous increase of RE content led to an increasing trend for inclusion size and a gradual deterioration for inclusion distribution. RE addition could improve the transverse impact toughness and isotropy of bearing steel, and for modified highcarbon chrom ium bearing steel by RE alloying, the increase of RE content continuously increased both transverse and longitudinal im pact toughness until excessive RE addition.