On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a specia...On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a special issue consisting of 11 invited reviews from more than 30 authors,mainly from China,has been organized.This is the second volume of the special issues entitled Frontiers in Astrophysics published in RAA.The publication aims at evaluating the current status and key progress in some frontier areas of astronomy and astrophysics with a spirit of guiding future studies.展开更多
Low mass ratio contact binary systems are more likely to have unstable orbits and potentially merge.In addition,such systems exhibit characteristics such as starspots and high energy emissions(UV)suggestive of chromos...Low mass ratio contact binary systems are more likely to have unstable orbits and potentially merge.In addition,such systems exhibit characteristics such as starspots and high energy emissions(UV)suggestive of chromospheric and magnetic activity.Light curve modeling of ten contact binary systems is reported.All were found to be of extreme low mass ratio ranging from 0.122 to 0.24 and three were found to be potentially unstable and possible merger candidates.Filling of the infrared calcium absorption lines is a marker of increased chromospheric activity.We use the available Large Sky Area Multi-Object Fiber Spectroscopic Telescope spectra along with matched standard spectra(broadened for rotation)to measure the excess filling of the central core depression flux of the two main infrared calcium absorption linesλ8542 andλ8662.We find that all reported contact binaries have excess filling of the core flux in the infrared calcium lines.Three of the systems reported were also observed by the Galaxy Evolution Explorer mission and we find that all three have features of excess ultraviolet emissions further adding evidence for increased chromospheric activity in low mass ratio contact binaries.Analysis of both orbital stability and absorption line filling is dependent on the determination of geometric and absolute parameters from light curve modeling.Not an insignificant number of contact binary light curves exhibit the O’Connell effect,usually attributed to starspots.We discuss the inclusion of starspots in light curve solutions and how they influence the geometric and absolute parameters.展开更多
The first multiband photometric solutions of the short-period V Gru eclipsing binary from the southern hemisphere are presented in this study.Light curves of the system were observed through BVI filters at the Congari...The first multiband photometric solutions of the short-period V Gru eclipsing binary from the southern hemisphere are presented in this study.Light curves of the system were observed through BVI filters at the Congarinni Observatory in Australia for 15 nights.In addition to the new ground-based data,we also used the TESS observations in two sectors.We analyzed the light curves of the system using the PHysics Of Eclipsing BinariEs(PHOEBE)2.4.7 version code to achieve the best accordance with the photometric observations.The solutions suggest that V Gru is a near-contact binary system with q=1.302(81)mass ratio,f_(1)=0.010(23),f_(2)=-0.0.009(21),and i=73.45(38).We considered the two hot spots on the hotter and cooler components for the light curve analysis.We extracted the minima times from the light curves based on the Markov Chain Monte Carlo(MCMC)approach.Using our new light curves,TESS,and additional literature minima,we computed the ephemeris of V Gru.The system’s eclipse timing variation trend was determined using the MCMC method.This system is a good and challenging case for future studies.展开更多
Abstract We report the discovery of 45 high-velocity extreme horizontal branch (EHB) stars in the globular cluster Omega Centauri (NGC 5139). The tangential ve- locities of these EHB stars are determined to be in ...Abstract We report the discovery of 45 high-velocity extreme horizontal branch (EHB) stars in the globular cluster Omega Centauri (NGC 5139). The tangential ve- locities of these EHB stars are determined to be in the range 93-313 km s^-1, with an average uncertainty of -27 km s^-1. The central escape velocity of the cluster is determined to be in the range 60~105 km s^-1. These EHB stars are significantly more concentrated toward the cluster core compared with other cluster members. The formation mechanisms of these EHB stars are discussed. Our conclusions can be sum- marized as follows: (1) A comparison of the tangential velocities of these EHB stars to the central escape velocity of the cluster shows that most if not all of these EHB stars are unbound to the cluster; (2) These EHB stars obtained high velocities in the central cluster region no longer than - 1 Myr ago and may be subsequently ejected from the cluster in the next -1 Myr; (3) If the progenitors of these EHB stars were single stars, then they may have experienced a fast mass-loss process. If the progen- itors were in close binaries, then they may have formed through disruptions by the intermediate-mass black hole in the cluster center.展开更多
In our previous work, we developed a model to study the effects of rotation and/or tidal distortions on anharmonic radial oscillations and hence on the radial velocity curves of the polytropic models of pulsating vari...In our previous work, we developed a model to study the effects of rotation and/or tidal distortions on anharmonic radial oscillations and hence on the radial velocity curves of the polytropic models of pulsating variable stars.We considered the first three modes(fundamental and the next two higher modes) for the polytropic models of index 1.5 and 3.0 in that work.In the present paper, we are further extending our previous work to study the effect of the interaction of various modes on anharmonic radial oscillations and hence on radial velocity curves of the rotationally and/or tidally distorted polytropic models of pulsating variable stars.For this purpose, we have considered the following cases:(i) fundamental mode(ii) fundamental and the first mode,(iii) fundamental and the next two modes and finally(iv) fundamental and the next three higher modes of pulsation in our study.The objective of this paper is also to investigate whether the interaction of various modes affects the results of our previous study or not.The results of this study show that the interaction of the fundamental mode with higher modes appreciably changes the shape of the radial velocity curve of rotationally distorted and rotationally and tidally distorted polytropic models of pulsating variable stars.展开更多
Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has disc...Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropic models of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.展开更多
We carried out time-series photometric observations in the Re-band of the young, poorly studied open cluster ASCC 5 during November and December, 2012, to search for magnetically active stars, and discovered four ecli...We carried out time-series photometric observations in the Re-band of the young, poorly studied open cluster ASCC 5 during November and December, 2012, to search for magnetically active stars, and discovered four eclipsing binary stars in this field. In order to characterize these four newly discovered binaries, we derived their orbital periods by their times of light minimum, estimated their effective tem- peratures based on their (J - H) colors and analyzed their light curves using the Wilson-Devinney light curve modeling technique. Our analyses reveal that all of them are contact binaries with short orbital periods of less than 0.5 d, with spectral types from late-F to mid-K. Among them, one is a typical A subtype contact binary with a mass ratio around 0.5 and a period of 0.44 d, and one is an H subtype contact binary with a high mass ratio around 0.9 and a short period of about 0.27 d. The other two systems show low amplitudes of light variation (Ant 〈0.11m); their actual photomet- ric mass ratios could not be determined by the light curve modelings, probably due to their attributes of being partially eclipsing stars. A preliminary analysis for these two systems indicates that both of them are likely to be W subtype contact binaries with low orbital inclinations. In addition, both of these two low amplitude variables show asymmetric distorted light curves (e.g., O'Connell effect of ARc --~0.02m) during the observing runs, suggesting the presence of starspots on these two systems. More inter- estingly, the one showing a large case of the O'Connell effect presented a remarkable variation in the shape of the light curve on a time scale of one day, indicating that this star is in a very active state. Therefore, these two stars need spectroscopic observations to precisely determine their parameters, as well as further photometric observations to understand the properties of their magnetic activity, e.g., the evolution of starspots.展开更多
We report the results from our analysis of Fermi Large Area Telescope (LAT) data for the transitional millisecond pulsar binary PSR J1023+0038. The time period of the data is nearly 9 yr, and that after the source...We report the results from our analysis of Fermi Large Area Telescope (LAT) data for the transitional millisecond pulsar binary PSR J1023+0038. The time period of the data is nearly 9 yr, and that after the source's transition, in June 2013 from the disk-free state to the active state of having an accretion disk, is approximately 4 yr. We identify a high-energy 〉5.5 GeV component in the source's spectrum in the active state, and find this component is only significantly detected in half of the orbital phase centered at the descending node (when the pulsar is moving towards the Earth). Considering the pulsar scenario proposed for multi-frequency emission from the source, in which the pulsar is still active and a cold-relativistic pulsar wind inverse-Compton scatters the photons from the accretion disk, we discuss the origin of the high-energy component. In order to explain the observed spectrum, a power-law distribution of particles, with an index of ~3, in the pulsar wind is required, while the orbital variations are possibly due to changes in power-law index as a function of orbital phase.展开更多
In this Mini-Volume, seven papers written on the basis of talks selected from those presented at the scientific conference "Modern studies of variable stars," commemorating Prof. M. A. Svechnikov(1933–2011)...In this Mini-Volume, seven papers written on the basis of talks selected from those presented at the scientific conference "Modern studies of variable stars," commemorating Prof. M. A. Svechnikov(1933–2011), are published. The conference covered a variety of variable-star topics; the papers in this Mini-Volume deal with close, mainly eclipsing, binaries, Herbig Be stars and stellar molecular masers, with an accent on stellar catalogs of different kinds. We briefly review the contents of these papers.展开更多
Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through lig...Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the ex- tensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R ~4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42 MQ and 0.29-0.67 R, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.展开更多
Contact binaries at various stages of evolution unveil various operating mechanisms that drive them.We report the photometric and period variation analysis of two contact binaries EV Cnc and AH Cnc in open cluster M67...Contact binaries at various stages of evolution unveil various operating mechanisms that drive them.We report the photometric and period variation analysis of two contact binaries EV Cnc and AH Cnc in open cluster M67.We observed the cluster from the JCBT 1.3 m telescope and utilized TESS and Kepler observations.The photometric solutions of EV Cnc and AH Cnc revealed a mass ratio of q~0.41 and~0.15 with an inclination of i=42°and87°respectively.These solutions suggest that EV Cnc is probably a semi-detached and AH Cnc is a deep low-mass ratio contact binary.The study of O-C variation analysis indicates that for both systems,the period is increasing which suggests the mass transfer is occurring from secondary to primary.In the case of AH Cnc and based on simulations by randomly varying the time of minima to fit the LITE solution,we noted the third body orbital period to be around P_(3)=26.82±2.54 yr,which is different from earlier reported values and conclude that future observations are required to confirm this scenario.We compare these two systems with other similar contact binaries to get an estimate of the final configuration of the respective systems.展开更多
In this study,we present an investigation of the newly discovered dwarf nova ASASSN-19oc during its superoutburst on 2019 June 2.We carried out detailed UBVRcIc-photometric observations and also obtained a spectrum on...In this study,we present an investigation of the newly discovered dwarf nova ASASSN-19oc during its superoutburst on 2019 June 2.We carried out detailed UBVRcIc-photometric observations and also obtained a spectrum on day 7 of the outburst,which shows the presence of hydrogen absorption lines commonly found in dwarf nova outbursts.Analysis of photometric data reveals the occurrence of early superhumps in the initial days of observations,followed by ordinary and late superhumps.We have accurately calculated the period of the ordinary superhumps as Pord=0.05681(10)days and determined the periods at different stages,as well as the rate of change of the superhump period(P_(dot)=(5)P/P=8.1×10^(-5)).Additionally,we have derived the mass ratio of the components(q=0.09),and estimated the color temperature during the outburst as~11,000 K,the distance to the system(d=560 pc)and absolute magnitude of the system in outburst(MV=5.3).We have shown that outbursts of this star are very rare:based on brightness measurements on 600 archival photographic plates,we found only one outburst that occurred in 1984.This fact,as well as the properties listed above,convincingly shows that the variable ASASSN-19oc is a dwarf nova of WZ Sge type.展开更多
A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understanding that the energy exchange is due to the ...A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understanding that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point, c) The effects of spin, orbital rotation and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered, d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M⊙ and one 5M⊙ star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.展开更多
By using the Lunar-based Ultraviolet Telescope (LUT) from 2014 December 2 to December 4, the first near-UV light curve of the well-known Algol-type binary TW Dra is reported, which is analyzed with the 2013 version ...By using the Lunar-based Ultraviolet Telescope (LUT) from 2014 December 2 to December 4, the first near-UV light curve of the well-known Algol-type binary TW Dra is reported, which is analyzed with the 2013 version of the W-D code. Our solutions confirmed that TW Dra is a semi-detached binary system where the secondary component fills its Roche lobe. The mass ratio and a high inclination are obtained (q = 0.47, i = 86.68°). Based on 589 available data spanning more than one century, the complex period changes are studied. Secular increase and three cyclical changes are found in the corresponding orbital period analysis. The secular increase changes reveal mass transfer from the secondary component to the primary one at a rate of 6.8 × 10-7 M yr-1. One large cyclical change of 116.04 yr may be caused by disturbance of visual component ADS 9706B orbiting TW Dra (ADS 9706A), while the other two cyclical changes with shorter periods of 22.47 and 37.27 yr can be explained as the result of two circumbinary companions that are orbiting around TW Dra, where the two companions are in simple 3 : 5 orbit-rotation resonances. TW Dra itself is a basic binary in a possible sextuple system with the configuration (1 + 1) + (1 + 1) + (1 + 1), which further suggests that multiplicity may be a fairly common phenomenon in close binary systems.展开更多
The lander of China’s Chang’E-3 spacecraft is equipped with a 15-cm telescope that is very useful for monitoring celestial objects in the ultraviolet(UV) band(245–340 nm).The Lunar-based Ultraviolet Telescope(LUT) ...The lander of China’s Chang’E-3 spacecraft is equipped with a 15-cm telescope that is very useful for monitoring celestial objects in the ultraviolet(UV) band(245–340 nm).The Lunar-based Ultraviolet Telescope(LUT) is the first long-term lunar-based astronomical observatory,that can make uninterrupted observations of a target from the Moon.Here we present the continuous complete UV light curve of the eclipsing binary TX Herculis(TX Her).The analysis of the light curve suggests that TX Her is a detached binary.The dip in the light curve was explained by the emergence of a stellar dark spot on the less massive F0 type component.The cyclic change of arrival eclipse times for the system reveals that it contains an additional stellar companion with a minimal mass of 0.35 M⊙ and a period of 48.92 yr,which is supported by the detected light contribution of the third body from light curve analysis.This third body may play an important role in the formation of the present short-period system TX Her.展开更多
New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn...New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric.Therefore,a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa.At the same time,we added a third light to the photometric solution of FP Lyn for the final result.The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn,q = 1.075 and f = 4.6% for FV CVn,and q = 3.623 and f = 10.7% for V354 UMa respectively.The investigations of orbital period for these three systems indicate that the periods are variable.FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 ×10^-7 dyr^-1 and dp/dt = 7.70 ×10^-7 dyr^-1 respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component.In addition,some variable components were discovered for FV CVn,including a rate of dp/dt =-1.13 ×10^-6 dyr^-1 accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively.The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.展开更多
We present LAMOST data on 168 γ Doradus(γ Dor) pulsating stars including stellar atmospheric parameters of 137 variables and spectral types for all of the samples. The distributions of period(P), temperature(T), gra...We present LAMOST data on 168 γ Doradus(γ Dor) pulsating stars including stellar atmospheric parameters of 137 variables and spectral types for all of the samples. The distributions of period(P), temperature(T), gravitational acceleration(log(g)) and metallicity [Fe/H] are shown. It is found that most γ Dor variables are main-sequence stars with early F spectral types and temperatures from 6880 K to7280 K. They are slightly more metal poor than the Sun with a metallicity range from-0.4 to 0. On the H-R and log g-T diagrams, both the γ Dor and δ Scuti(δ Sct) stars occupy in the same region and some are beyond the borders predicted by current stellar pulsation theories. It is discovered that the physical properties of γ Dor stars are similar to those of long-period δ Sct(P > 0.3 d) stars. The stellar atmospheric parameters are all correlated with the pulsation period for short-period δ Sct variables(P < 0.3 d), but there are no such relations for γ Dor or long-period δ Sct stars. These results reveal that γ Dor and long-period δ Sct are the same group of pulsating stars and they are different from short-period δ Sct variables. Meanwhile, 33γ Dor stars are identified as candidates of binary or multiple systems.展开更多
We present a period analysis of the near-contact binary CN And using all available times of light minima. It is revealed that the orbital period exhibits a long-term decrease as well as a small-amplitude cyclic oscill...We present a period analysis of the near-contact binary CN And using all available times of light minima. It is revealed that the orbital period exhibits a long-term decrease as well as a small-amplitude cyclic oscillation. This result suggests that the secular period decrease at the rate of d P/dt =-1.4017 ×10-7 d yr-1 is caused by a combination of mass transfer and angular momentum loss due to magnetic braking. The periodic variation with an amplitude of A = 0.0036 d and a period of Pmod = 28.3542 yr should be rooted in the light-time effect of a third body, rather than cyclic magnetic activity.展开更多
TZ Eri and TU Her are both classic Algol-type systems(Algols). By observing and collecting times of minimum light, we constructed the O-C curves for the two systems. The long-time upward and downward parabolas shown i...TZ Eri and TU Her are both classic Algol-type systems(Algols). By observing and collecting times of minimum light, we constructed the O-C curves for the two systems. The long-time upward and downward parabolas shown in these diagrams are considered to be the result of the combination of mass transfer and angular momentum loss. The secular orbital period change rates are d P/dt = 4.74(±0.12) ×10-7 d yr-1 and d P/dt =-2.33(±0.01) × 10-6 d yr-1, respectively. There are also cyclic variations in their O-C curves which might be caused by the light-travel time effect(LTTE). A circumbinary star may exist in the TZ Eri system with a mass of at least 1.34 M⊙, while there are possibly two celestial bodies that almost follow a 2 : 1 resonance orbit around the TU Her binary pair. Their masses are at least 2.43 M⊙and 1.27 M⊙.展开更多
We utilize the PAdova and TRieste Stellar Evolution Code(PARSEC) combined with photometric observations to determine a guaranteed mass of AL Cas and re-examine its related physical parameters.Multicolor-photometric ob...We utilize the PAdova and TRieste Stellar Evolution Code(PARSEC) combined with photometric observations to determine a guaranteed mass of AL Cas and re-examine its related physical parameters.Multicolor-photometric observations of AL Cas have been performed in 2016 and 2017. We use the WilsonDevinney(W-D) code to analyze the light curves and find that AL Cas is probably an A-subtype contact binary(f = 35.7±0.9%) with a mass ratio q = 0.6399±0.0230 and an effective temperature difference?T = 78 K. The mass-radius relation of a higher luminosity component for AL Cas is obtained by two methods: depending on calculation of the Roche lobe(DCRL method) and depending on calculation of the W-D code(DCWD method). Using this relationship with the PARSEC model, we investigate the component masses of AL Cas as M1 = 1.19±0.23 M⊙ with M2 = 0.76±0.18 M⊙ by the DCRL method and M1 = 1.22±0.26 M⊙ with M2 = 0.78±0.20 M ⊙ by the DCWD method. By means of the photometric studies, we examine the related physical properties of AL Cas with the latest findings. We update the orbital period(Porb = 0.50055593 d) of AL Cas according to six new times of light minimum together with those collected from the literature. Meanwhile, the(O-C)2 curve analysis suggests that the orbital period of AL Cas has a cyclic variation with a period of 81.25 yr and an amplitude of 0.01415 d. This cyclic change would be caused by the light-travel time effect from a third body. A similar mass of the third body(M3 sin i′= 0.279 M⊙) is derived from our two methods.展开更多
文摘On the arrival of the 20 th anniversary of the journal,Research in Astronomy and Astrophysics(RAA),we see rapid progress in the frontiers of astronomy and astrophysics.To celebrate the birth and growth of RAA,a special issue consisting of 11 invited reviews from more than 30 authors,mainly from China,has been organized.This is the second volume of the special issues entitled Frontiers in Astrophysics published in RAA.The publication aims at evaluating the current status and key progress in some frontier areas of astronomy and astrophysics with a spirit of guiding future studies.
基金support by the Astronomical station Vidojevica,funding from the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(contract No.451-03-66/2024-03/200002)by the EC through project BELISSIMA(call FP7-REGPOT-2010-5,No.265772)financed by Silesian University of Technology Statutory Activities grant No.BK-250/RAu-11/2024。
文摘Low mass ratio contact binary systems are more likely to have unstable orbits and potentially merge.In addition,such systems exhibit characteristics such as starspots and high energy emissions(UV)suggestive of chromospheric and magnetic activity.Light curve modeling of ten contact binary systems is reported.All were found to be of extreme low mass ratio ranging from 0.122 to 0.24 and three were found to be potentially unstable and possible merger candidates.Filling of the infrared calcium absorption lines is a marker of increased chromospheric activity.We use the available Large Sky Area Multi-Object Fiber Spectroscopic Telescope spectra along with matched standard spectra(broadened for rotation)to measure the excess filling of the central core depression flux of the two main infrared calcium absorption linesλ8542 andλ8662.We find that all reported contact binaries have excess filling of the core flux in the infrared calcium lines.Three of the systems reported were also observed by the Galaxy Evolution Explorer mission and we find that all three have features of excess ultraviolet emissions further adding evidence for increased chromospheric activity in low mass ratio contact binaries.Analysis of both orbital stability and absorption line filling is dependent on the determination of geometric and absolute parameters from light curve modeling.Not an insignificant number of contact binary light curves exhibit the O’Connell effect,usually attributed to starspots.We discuss the inclusion of starspots in light curve solutions and how they influence the geometric and absolute parameters.
基金The National Science Foundation(NSF 1517474,1909109)the National Aeronautics and Space Administration(NASA 17ADAP17-68)both contributed funding to PHOEBE that we utilized。
文摘The first multiband photometric solutions of the short-period V Gru eclipsing binary from the southern hemisphere are presented in this study.Light curves of the system were observed through BVI filters at the Congarinni Observatory in Australia for 15 nights.In addition to the new ground-based data,we also used the TESS observations in two sectors.We analyzed the light curves of the system using the PHysics Of Eclipsing BinariEs(PHOEBE)2.4.7 version code to achieve the best accordance with the photometric observations.The solutions suggest that V Gru is a near-contact binary system with q=1.302(81)mass ratio,f_(1)=0.010(23),f_(2)=-0.0.009(21),and i=73.45(38).We considered the two hot spots on the hotter and cooler components for the light curve analysis.We extracted the minima times from the light curves based on the Markov Chain Monte Carlo(MCMC)approach.Using our new light curves,TESS,and additional literature minima,we computed the ephemeris of V Gru.The system’s eclipse timing variation trend was determined using the MCMC method.This system is a good and challenging case for future studies.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.11403004)the School Foundation of Changzhou University(ZMF1002121)+3 种基金support by the 973 Program(2014CB845702)the Strategic Priority Research Program The Emergence of Cosmological Structures of the Chinese Academy of Sciences(CASgrant XDB09010100)by the NSFC(No.11373054)
文摘Abstract We report the discovery of 45 high-velocity extreme horizontal branch (EHB) stars in the globular cluster Omega Centauri (NGC 5139). The tangential ve- locities of these EHB stars are determined to be in the range 93-313 km s^-1, with an average uncertainty of -27 km s^-1. The central escape velocity of the cluster is determined to be in the range 60~105 km s^-1. These EHB stars are significantly more concentrated toward the cluster core compared with other cluster members. The formation mechanisms of these EHB stars are discussed. Our conclusions can be sum- marized as follows: (1) A comparison of the tangential velocities of these EHB stars to the central escape velocity of the cluster shows that most if not all of these EHB stars are unbound to the cluster; (2) These EHB stars obtained high velocities in the central cluster region no longer than - 1 Myr ago and may be subsequently ejected from the cluster in the next -1 Myr; (3) If the progenitors of these EHB stars were single stars, then they may have experienced a fast mass-loss process. If the progen- itors were in close binaries, then they may have formed through disruptions by the intermediate-mass black hole in the cluster center.
基金the Council of Scientific and Industrial Research (CSIR) for the financial support
文摘In our previous work, we developed a model to study the effects of rotation and/or tidal distortions on anharmonic radial oscillations and hence on the radial velocity curves of the polytropic models of pulsating variable stars.We considered the first three modes(fundamental and the next two higher modes) for the polytropic models of index 1.5 and 3.0 in that work.In the present paper, we are further extending our previous work to study the effect of the interaction of various modes on anharmonic radial oscillations and hence on radial velocity curves of the rotationally and/or tidally distorted polytropic models of pulsating variable stars.For this purpose, we have considered the following cases:(i) fundamental mode(ii) fundamental and the first mode,(iii) fundamental and the next two modes and finally(iv) fundamental and the next three higher modes of pulsation in our study.The objective of this paper is also to investigate whether the interaction of various modes affects the results of our previous study or not.The results of this study show that the interaction of the fundamental mode with higher modes appreciably changes the shape of the radial velocity curve of rotationally distorted and rotationally and tidally distorted polytropic models of pulsating variable stars.
文摘Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropic models of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.
基金supported by the National Natural Science Foundation of China (Grants Nos. 10373023 10773027 and 11263001)
文摘We carried out time-series photometric observations in the Re-band of the young, poorly studied open cluster ASCC 5 during November and December, 2012, to search for magnetically active stars, and discovered four eclipsing binary stars in this field. In order to characterize these four newly discovered binaries, we derived their orbital periods by their times of light minimum, estimated their effective tem- peratures based on their (J - H) colors and analyzed their light curves using the Wilson-Devinney light curve modeling technique. Our analyses reveal that all of them are contact binaries with short orbital periods of less than 0.5 d, with spectral types from late-F to mid-K. Among them, one is a typical A subtype contact binary with a mass ratio around 0.5 and a period of 0.44 d, and one is an H subtype contact binary with a high mass ratio around 0.9 and a short period of about 0.27 d. The other two systems show low amplitudes of light variation (Ant 〈0.11m); their actual photomet- ric mass ratios could not be determined by the light curve modelings, probably due to their attributes of being partially eclipsing stars. A preliminary analysis for these two systems indicates that both of them are likely to be W subtype contact binaries with low orbital inclinations. In addition, both of these two low amplitude variables show asymmetric distorted light curves (e.g., O'Connell effect of ARc --~0.02m) during the observing runs, suggesting the presence of starspots on these two systems. More inter- estingly, the one showing a large case of the O'Connell effect presented a remarkable variation in the shape of the light curve on a time scale of one day, indicating that this star is in a very active state. Therefore, these two stars need spectroscopic observations to precisely determine their parameters, as well as further photometric observations to understand the properties of their magnetic activity, e.g., the evolution of starspots.
基金supported by the National Program on Key Research and Development Project (Grant No.2016YFA0400804)the National Natural Science Foundation of China (NSFC) (Nos.11373055,11633007 and U1738131)+1 种基金the CAS/SAFEA International Partnership Program for Creative Research Teamsthe NSFC (Nos.11573010,U1631103 and 11661161010)
文摘We report the results from our analysis of Fermi Large Area Telescope (LAT) data for the transitional millisecond pulsar binary PSR J1023+0038. The time period of the data is nearly 9 yr, and that after the source's transition, in June 2013 from the disk-free state to the active state of having an accretion disk, is approximately 4 yr. We identify a high-energy 〉5.5 GeV component in the source's spectrum in the active state, and find this component is only significantly detected in half of the orbital phase centered at the descending node (when the pulsar is moving towards the Earth). Considering the pulsar scenario proposed for multi-frequency emission from the source, in which the pulsar is still active and a cold-relativistic pulsar wind inverse-Compton scatters the photons from the accretion disk, we discuss the origin of the high-energy component. In order to explain the observed spectrum, a power-law distribution of particles, with an index of ~3, in the pulsar wind is required, while the orbital variations are possibly due to changes in power-law index as a function of orbital phase.
文摘In this Mini-Volume, seven papers written on the basis of talks selected from those presented at the scientific conference "Modern studies of variable stars," commemorating Prof. M. A. Svechnikov(1933–2011), are published. The conference covered a variety of variable-star topics; the papers in this Mini-Volume deal with close, mainly eclipsing, binaries, Herbig Be stars and stellar molecular masers, with an accent on stellar catalogs of different kinds. We briefly review the contents of these papers.
文摘Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the ex- tensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R ~4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42 MQ and 0.29-0.67 R, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.
基金support from the SRF INSPIRE(IF 170314)fellowship program,Government of Indiafinancial support from the SERB Core Research Grant project,the Government of India。
文摘Contact binaries at various stages of evolution unveil various operating mechanisms that drive them.We report the photometric and period variation analysis of two contact binaries EV Cnc and AH Cnc in open cluster M67.We observed the cluster from the JCBT 1.3 m telescope and utilized TESS and Kepler observations.The photometric solutions of EV Cnc and AH Cnc revealed a mass ratio of q~0.41 and~0.15 with an inclination of i=42°and87°respectively.These solutions suggest that EV Cnc is probably a semi-detached and AH Cnc is a deep low-mass ratio contact binary.The study of O-C variation analysis indicates that for both systems,the period is increasing which suggests the mass transfer is occurring from secondary to primary.In the case of AH Cnc and based on simulations by randomly varying the time of minima to fit the LITE solution,we noted the third body orbital period to be around P_(3)=26.82±2.54 yr,which is different from earlier reported values and conclude that future observations are required to confirm this scenario.We compare these two systems with other similar contact binaries to get an estimate of the final configuration of the respective systems.
基金financial support of the APVV-20-0148,VEGA 2/0030/21 and VEGA 2/0031/22grantssupport from the Government Office of the Slovak Republic within EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No.09I03-03-V01-00002the private company 4pi Systeme GmbH for partial sponsorship。
文摘In this study,we present an investigation of the newly discovered dwarf nova ASASSN-19oc during its superoutburst on 2019 June 2.We carried out detailed UBVRcIc-photometric observations and also obtained a spectrum on day 7 of the outburst,which shows the presence of hydrogen absorption lines commonly found in dwarf nova outbursts.Analysis of photometric data reveals the occurrence of early superhumps in the initial days of observations,followed by ordinary and late superhumps.We have accurately calculated the period of the ordinary superhumps as Pord=0.05681(10)days and determined the periods at different stages,as well as the rate of change of the superhump period(P_(dot)=(5)P/P=8.1×10^(-5)).Additionally,we have derived the mass ratio of the components(q=0.09),and estimated the color temperature during the outburst as~11,000 K,the distance to the system(d=560 pc)and absolute magnitude of the system in outburst(MV=5.3).We have shown that outbursts of this star are very rare:based on brightness measurements on 600 archival photographic plates,we found only one outburst that occurred in 1984.This fact,as well as the properties listed above,convincingly shows that the variable ASASSN-19oc is a dwarf nova of WZ Sge type.
基金the National Natural Science Foundation of China.
文摘A model for contact binary systems is presented, which incorporates the following special features: a) The energy exchange between the components is based on the understanding that the energy exchange is due to the release of potential, kinetic and thermal energies of the exchanged mass. b) A special form of mass and angular momentum loss occurring in contact binaries is losses via the outer Lagrangian point, c) The effects of spin, orbital rotation and tidal action on the stellar structure as well as the effect of meridian circulation on the mixing of the chemical elements are considered, d) The model is valid not only for low-mass contact binaries but also for high-mass contact binaries. For illustration, we used the model to trace the evolution of a massive binary system consisting of one 12M⊙ and one 5M⊙ star. The result shows that the start and end of the contact stage fall within the semi-detached phase during which the primary continually transfers mass to the secondary. The time span of the contact stage is short and the mass transfer rate is very large. Therefore, the contact stage can be regarded as a special part of the semi-detached phase with a large mass transfer rate. Both mass loss through the outer Lagrangian point and oscillation between contact and semi-contact states can occur during the contact phase, and the effective temperatures of the primary and the secondary are almost equal.
基金supported by the Key Research Program of Chinese Academy of Sience (KGEDEW-603)the National Natural Science Foundation of China (Nos.11403095,11133007 and 11325315)+2 种基金the Yunnan Natural Science Foundation (2014FB187)the Science Foundation of Yunnan Province (Grant No.2012HC011)the Strategic Priority Research Program “The Emergence of Cosmological Structures” of the Chinese Academy of Sciences (Grant No.XDB09010202)
文摘By using the Lunar-based Ultraviolet Telescope (LUT) from 2014 December 2 to December 4, the first near-UV light curve of the well-known Algol-type binary TW Dra is reported, which is analyzed with the 2013 version of the W-D code. Our solutions confirmed that TW Dra is a semi-detached binary system where the secondary component fills its Roche lobe. The mass ratio and a high inclination are obtained (q = 0.47, i = 86.68°). Based on 589 available data spanning more than one century, the complex period changes are studied. Secular increase and three cyclical changes are found in the corresponding orbital period analysis. The secular increase changes reveal mass transfer from the secondary component to the primary one at a rate of 6.8 × 10-7 M yr-1. One large cyclical change of 116.04 yr may be caused by disturbance of visual component ADS 9706B orbiting TW Dra (ADS 9706A), while the other two cyclical changes with shorter periods of 22.47 and 37.27 yr can be explained as the result of two circumbinary companions that are orbiting around TW Dra, where the two companions are in simple 3 : 5 orbit-rotation resonances. TW Dra itself is a basic binary in a possible sextuple system with the configuration (1 + 1) + (1 + 1) + (1 + 1), which further suggests that multiplicity may be a fairly common phenomenon in close binary systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11573063 and 11611530685)the Key Science Foundation of Yunnan Province (Grant No. 2017FA001)+1 种基金CAS “Light of West China” ProgramCAS Interdisciplinary Innovation Team
文摘The lander of China’s Chang’E-3 spacecraft is equipped with a 15-cm telescope that is very useful for monitoring celestial objects in the ultraviolet(UV) band(245–340 nm).The Lunar-based Ultraviolet Telescope(LUT) is the first long-term lunar-based astronomical observatory,that can make uninterrupted observations of a target from the Moon.Here we present the continuous complete UV light curve of the eclipsing binary TX Herculis(TX Her).The analysis of the light curve suggests that TX Her is a detached binary.The dip in the light curve was explained by the emergence of a stellar dark spot on the less massive F0 type component.The cyclic change of arrival eclipse times for the system reveals that it contains an additional stellar companion with a minimal mass of 0.35 M⊙ and a period of 48.92 yr,which is supported by the detected light contribution of the third body from light curve analysis.This third body may play an important role in the formation of the present short-period system TX Her.
基金financial support from the Universidad Nacional Aut ónoma de México (UNAM) and DGAPA (PAPIIT IN 100918)supported by the National Natural Science Foundation of China (NSFC) (No. 11703016)+3 种基金by the Joint Research Fund in Astronomy (No. U1431105)by the Natural Science Foundation of Shandong Province (No. ZR2014AQ019)by the Young Scholars Program of Shandong University, Weihai (No. 20820171006)by the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects (No. OP201704)
文摘New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric.Therefore,a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa.At the same time,we added a third light to the photometric solution of FP Lyn for the final result.The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn,q = 1.075 and f = 4.6% for FV CVn,and q = 3.623 and f = 10.7% for V354 UMa respectively.The investigations of orbital period for these three systems indicate that the periods are variable.FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 ×10^-7 dyr^-1 and dp/dt = 7.70 ×10^-7 dyr^-1 respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component.In addition,some variable components were discovered for FV CVn,including a rate of dp/dt =-1.13 ×10^-6 dyr^-1 accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively.The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.
基金Funding for the project has been provided by the National Development and Reform CommissionFunding for the DPAC has been provided by national institutions,in particular the institutions participating in the Gaia Multilateral Agreement
文摘We present LAMOST data on 168 γ Doradus(γ Dor) pulsating stars including stellar atmospheric parameters of 137 variables and spectral types for all of the samples. The distributions of period(P), temperature(T), gravitational acceleration(log(g)) and metallicity [Fe/H] are shown. It is found that most γ Dor variables are main-sequence stars with early F spectral types and temperatures from 6880 K to7280 K. They are slightly more metal poor than the Sun with a metallicity range from-0.4 to 0. On the H-R and log g-T diagrams, both the γ Dor and δ Scuti(δ Sct) stars occupy in the same region and some are beyond the borders predicted by current stellar pulsation theories. It is discovered that the physical properties of γ Dor stars are similar to those of long-period δ Sct(P > 0.3 d) stars. The stellar atmospheric parameters are all correlated with the pulsation period for short-period δ Sct variables(P < 0.3 d), but there are no such relations for γ Dor or long-period δ Sct stars. These results reveal that γ Dor and long-period δ Sct are the same group of pulsating stars and they are different from short-period δ Sct variables. Meanwhile, 33γ Dor stars are identified as candidates of binary or multiple systems.
基金supported by the Joint Research Funds in Astronomy (U1731110, U1731106 and U1531108) under cooperative agreement between the National Natural Science Foundation of China and the Chinese Academy of Sciencespartially supported by the National Natural Science Foundation of China (11703020)
文摘We present a period analysis of the near-contact binary CN And using all available times of light minima. It is revealed that the orbital period exhibits a long-term decrease as well as a small-amplitude cyclic oscillation. This result suggests that the secular period decrease at the rate of d P/dt =-1.4017 ×10-7 d yr-1 is caused by a combination of mass transfer and angular momentum loss due to magnetic braking. The periodic variation with an amplitude of A = 0.0036 d and a period of Pmod = 28.3542 yr should be rooted in the light-time effect of a third body, rather than cyclic magnetic activity.
基金partly supported by the National Natural Science Foundation of China (Nos. 11573063 and 11611530685)the Key Science Foundation of Yunnan Province (No. 2017FA001)the CAS “Light of West China” Program and the CAS Interdisciplinary Innovation Team
文摘TZ Eri and TU Her are both classic Algol-type systems(Algols). By observing and collecting times of minimum light, we constructed the O-C curves for the two systems. The long-time upward and downward parabolas shown in these diagrams are considered to be the result of the combination of mass transfer and angular momentum loss. The secular orbital period change rates are d P/dt = 4.74(±0.12) ×10-7 d yr-1 and d P/dt =-2.33(±0.01) × 10-6 d yr-1, respectively. There are also cyclic variations in their O-C curves which might be caused by the light-travel time effect(LTTE). A circumbinary star may exist in the TZ Eri system with a mass of at least 1.34 M⊙, while there are possibly two celestial bodies that almost follow a 2 : 1 resonance orbit around the TU Her binary pair. Their masses are at least 2.43 M⊙and 1.27 M⊙.
基金supported by the program of the Light in China’s Western Region (LCWR,Grant No. 2015-XBQN-A-02)the National Natural Science Foundation of China (Grant Nos. 11273051, 11661161016, 11473024 and 11863005)+1 种基金the 13th Fiveyear Information Plan of Chinese Academy of Sciences (Grant No. XXH13503-03-107)the Youth Innovation Promotion Association CAS (Grant No. 2018080)
文摘We utilize the PAdova and TRieste Stellar Evolution Code(PARSEC) combined with photometric observations to determine a guaranteed mass of AL Cas and re-examine its related physical parameters.Multicolor-photometric observations of AL Cas have been performed in 2016 and 2017. We use the WilsonDevinney(W-D) code to analyze the light curves and find that AL Cas is probably an A-subtype contact binary(f = 35.7±0.9%) with a mass ratio q = 0.6399±0.0230 and an effective temperature difference?T = 78 K. The mass-radius relation of a higher luminosity component for AL Cas is obtained by two methods: depending on calculation of the Roche lobe(DCRL method) and depending on calculation of the W-D code(DCWD method). Using this relationship with the PARSEC model, we investigate the component masses of AL Cas as M1 = 1.19±0.23 M⊙ with M2 = 0.76±0.18 M⊙ by the DCRL method and M1 = 1.22±0.26 M⊙ with M2 = 0.78±0.20 M ⊙ by the DCWD method. By means of the photometric studies, we examine the related physical properties of AL Cas with the latest findings. We update the orbital period(Porb = 0.50055593 d) of AL Cas according to six new times of light minimum together with those collected from the literature. Meanwhile, the(O-C)2 curve analysis suggests that the orbital period of AL Cas has a cyclic variation with a period of 81.25 yr and an amplitude of 0.01415 d. This cyclic change would be caused by the light-travel time effect from a third body. A similar mass of the third body(M3 sin i′= 0.279 M⊙) is derived from our two methods.