Rice yield and heading date are two distinct traits controlled by quantitative trait loci (QTLs). The dissection of molecular mechanisms underlying rice yield traits is important for developing high-yielding rice va...Rice yield and heading date are two distinct traits controlled by quantitative trait loci (QTLs). The dissection of molecular mechanisms underlying rice yield traits is important for developing high-yielding rice varieties. Here, we report the cloning and characterization of Ghd8, a major QTL with pleiotropic effects on grain yield, heading date, and plant height. Two sets of near isogenic line populations were developed for the cloning of GhdS. Ghd8 was narrowed down to a 20-kb region containing two putative genes, of which one encodes the OsHAP3 subunit of a CCAAT-box binding protein (HAP complex); this gene was regarded as the Ghd8 candidate. A complementary test confirmed the identity and pleiotropic effects of the gene; interestingly, the genetic effect of Ghd8 was dependent on its genetic background. By regulating Ehdl, RFT1, and Hd3a, Ghd8 delayed flowering under long-day conditions, but promoted flowering under short-day conditions. Ghd8 up-regulated MOC1, a key gene controlling tillering and branching; this increased the number of tillers, primary and secondary branches, thus producing 50% more grains per plant. The ectopic expression of Ghd8 in Arabidopsis caused early flowering by 10 d-a situation similar to the one observed by its homolog AtHAP3b, when compared to wild-type under long-day conditions; these findings indicate the conserved function of Ghd8 and AtHAP3b in flowering in Arabidopsis. Our results demonstrated the important roles of Ghd8 in rice yield formation and flowering, as well as its opposite functions in flowering between rice and Arabidopsis under long-day conditions.展开更多
Trivalent lanthanide ions display fascinating optical properties. The discovery of the corresponding elements and their first industrial uses were intimately linked to their optical properties. This relationship has b...Trivalent lanthanide ions display fascinating optical properties. The discovery of the corresponding elements and their first industrial uses were intimately linked to their optical properties. This relationship has been kept alive until today when many high-technology applications of lanthanide-containing materials such as energy-saving lighting devices, displays, optical fibers and amplifiers, lasers, responsive luminescent stains for biomedical analyses and in cellulo sensing and imaging, heavily rely on the brilliant and pure-color emission of lanthanide ions. In this review we first outlined the basics of lanthanide luminescence with emphasis on f-f transitions, the sensitization mechanisms, and the assessment of the luminescence efficiency of lanthanide-containing emissive molecular edifices. Emphasis was then put on two fast developing aspects of lanthanide luminescence: materials for telecommunications and light emitting diodes, and biomedical imaging and sensing. Recent advances in NIR-emitting materials for plastic amplifiers and waveguides were described, together with the main solutions brought by researchers to minimize non-radiative deactivation of excited states. The demonstration in 1999 that erbium tris(8-hydroxyquinolinate) displayed a bright green emission suitable for organic light emitting diodes (OLEDs) was followed by realizing that in OLEDs, 25% of the excitation energy leads to singlet states and 75% to triplet states. Since lanthanide ions are good triplet quenchers, they now also play a key role in the development of these lighting devices. Luminescence analyses of biological molecules are among the most sensitive analytical techniques known. The long lifetime of the lanthanide excited states allows time-resolved spectroscopy to be used, suppressing the sample autofluorescence and reaching very low detection limits. Not only visible lanthanide sensors are now ubiquitously provided in medical diagnosis and in cell imaging, but the feasibility of using NIR emission of ions such 展开更多
Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version...Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980-2005) and another for near-future climate (2015-40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipi- tation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation. RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.展开更多
Grain yield is one of the most important indexes in rice breeding, which is governed by quantitative trait loci (QTLs). Different map- ping populations have been used to explore the QTLs controlling yield related tr...Grain yield is one of the most important indexes in rice breeding, which is governed by quantitative trait loci (QTLs). Different map- ping populations have been used to explore the QTLs controlling yield related traits. Primary populations such as F2 and recombi- nant inbred line populations have been widely used to discover QTLs in rice genome-wide, with hundreds of yield-related QTLs detected. Advanced populations such as near isogenic lines (NILs) are efficient to further fine-map and clone target QTLs. NILs for primarily identified QTLs have been proposed and confirmed to be the ideal population for map-based cloning. To date, 20 QTLs directly affecting rice grain yield and its components have been cloned with NIL-F2 populations, and 14 new grain yield QTLs havebeen validated in the NILs. The molecular mechanisms'of'a continuous/y increasing number of genes are being unveiled, which aids in the understanding of the formation of grain yield. Favorable alleles for rice breeding have been 'mined' from natural cultivars and wild rice by association analysis of known functional genes with target trait performance. Reasonable combination of favorable alleles has the potential to increase grain yield via use of functional marker assisted selection.展开更多
Background/Aims: Juvenile myopia is a serious problem in China, the prevalence of which stays at a high level and shows an upward trend. The target of this study was to explore the factors associated with myopia in Ch...Background/Aims: Juvenile myopia is a serious problem in China, the prevalence of which stays at a high level and shows an upward trend. The target of this study was to explore the factors associated with myopia in Chinese children. Methods: A cross-sectional analysis in a random sample survey was conducted in Beijing in 2008. The data collected from 15,316 Chinese school students aged 6 to 18 years, randomly selected from 19 schools were evaluated, including noncycloplegic refraction and possible genetic, environmental and behavioral factors, to explore the key risk factors for myopia. Univariate and multiple logistic regression analyses were performed to compare the OR values, and receiver operator characteristic (ROC) curves were generated to compare the differences among the areas under the ROC curves using the method of multiple comparison with the best. Results: Myopia was associated with shorter sleep times versus longer sleep times (adjusted OR = 3.37;95%CI 3.07-3.70), and the multivariate OR for two compared with no parents with myopic was 2.83 (95%CI 2.47-3.24) and 1.95 (95%CI 1.69-2.24) for reading or writing distances less than33 cmcompared to distances greater than33 cm. Controlling for other factors, children that slept for shorter periods of time had significantly more myopic refractions (?1.69D vs ?1.29D for children with longer sleeping time per day). Analysis of the areas under the ROC curves showed five variables with predictable values better than chance: age, sleeping time, reading or writing distance, hours of studying, and parental myopia. Conclusion: It was not surprising, as proved by other studies, that parental myopia, reading or writing distances, time spent on studying or other activities by using eyes were dominant risk factors associated with juvenile myopia. Our findings indicated that hours of sleeping were also closely related to juvenile myopia, in which the underlying mechanism should be explored in the future study.展开更多
An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive f...An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.展开更多
To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focuse...To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focused on the ability of the model to sort defects into four types:live knots,dead knots,pinholes,and cracks.Sample images were taken using an industrial camera,and a morphological algorithm was applied to locate the position of the defects.A portable near infrared spectrometer(900–1800 nm)collected the spectra of these positions.In addition,principal component analysis was utilized on these variables from spectral information and principal component vectors were extracted as the inputs of the model.The results show that a back propagation neural network model exhibited better discrimination accuracy of 92.7%for the training set and 92.0%for the test set.The research reveals that the NIR fusing machine vision is a feasible tool for detecting defects on board surfaces.展开更多
The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation as...The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation assessment.This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band.Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite,aerial,and increasingly—Unmanned Aerial Systems(UAS).While studies have found that the NDVI is effective for expressing vegetation status andquantified vegetation attributes,its widespread use and popularity,especially in UAS applications,carry inherent risks of misuse with end users who received little to no remote sensing education.This article summarizes the progress of NDVI acquisition,highlights the areas of NDVI application,and addresses the critical problems and considerations in using NDVI.Detailed discussion mainly covers three aspects:atmospheric eff ect,saturation phenomenon,and sensor factors.The use of NDVI can be highly eff ective as long as its limitations and capabilities are understood.This consideration is particularly important to the UAS user community.展开更多
Near infrared spectroscopy(NIRS)has been widely applied in both qualitative and quantitative analysis.There is growing interest in its application to traditional Chinese medicine(TCM)and a review of recent development...Near infrared spectroscopy(NIRS)has been widely applied in both qualitative and quantitative analysis.There is growing interest in its application to traditional Chinese medicine(TCM)and a review of recent developments in the field is timely.To present an overview of recent applications of NIRS to the identification,classification and analysis of TCM products,studies describing the application of NIRS to TCM products are classified into those involving qualitative and quantitative analysis.In addition,the application of NIRS to the detection of illegal additives and the rapid assessment of quality of TCMs by fast inspection are also described.This review covers over 100 studies emphasizing the application of NIRS in different fields.Furthermore,basic analytical principles and specific examples are used to illustrate the feasibility and effectiveness of NIRS in pattern identification.NIRS provides an effective and powerful tool for the qualitative and quantitative analysis of TCM products.展开更多
The second near-infrared(NIR-Ⅱ,1000-1700 nm)window provides a superior optical platform with high resolution,deep penetration and high signal-to-noise ratios(SNRs),which results from the intrinsic low scattering and ...The second near-infrared(NIR-Ⅱ,1000-1700 nm)window provides a superior optical platform with high resolution,deep penetration and high signal-to-noise ratios(SNRs),which results from the intrinsic low scattering and auto fluorescence in biological tissues.As one of the promising NIR-Ⅱemitting probes,lanthanide based nanoparticles(LnNPs)exhibit high photo stability and chemostability,long photoluminescence lifetimes,low long-term cytotoxicity and narrow emission bandwidths.All these merits have spurred the evolution of related bio-optics and a variety of biomedical applications of LnNPs.This mini-review discusses the most recent advances in both the design-the composition and surface modifications-and the applications of NIR-Ⅱemitting LnNPs in bioimaging,disease diagnosis and therapy.We also summarize the current limits and challenges facing the applications of LnNPs as well as discuss the directions of future development.展开更多
Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Throug...Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Through stress analysis of the element with variable strength and stiffness extracted from the strong-weak interface, the tri-axial compressive strength of the weak body and strong body near the interface as well as the areas away from the contact surface was found. Then, on the basis of three-dimensional fast Lagrangian method of continua and strain softening constitutive model composed of Coulomb-Mohr shear failure with tensile cut-off, stress and strain relationship of the four three-body combined models were analyzed under different confining pressures by numerical simulation. Finally, the different features of local shear zones and plastic failure areas of the four different models and their development trend with increasing confining pressure were discussed. The results show that additional stresses are derived due to the lateral deformation constraints near the strong-weak interface area, which results in the strength increasing in weak body and strength decreasing in strong body. The weakly consolidated soft rock and coal cementation exhibit significant strain softening behavior and bear compound tension-shear failure under uni-axial compression. With the increase of confining pressure, the tensile failure disappears from the model, and the failure type of composed model changes to local shear failure with different number of shearing bands and plastic failure zones. This work shows important guiding significance for the mechanism study of seismic, rock burst, and coal bump.展开更多
Quality by Test was the only way to guarantee quality of drug products before FDA launched current Good Manufacturing Practice. To clearly understand the manufacture processes, FDA generalized Quality by Design(QbD) i...Quality by Test was the only way to guarantee quality of drug products before FDA launched current Good Manufacturing Practice. To clearly understand the manufacture processes, FDA generalized Quality by Design(QbD) in the field of pharmacy, which is based on the thorough understanding of how materials and process parameters affect the quality profile of final products. The application of QbD in drug formulation and process design is based on a good understanding of the sources of variability and the manufacture process. In this paper,the basic knowledge of QbD, the elements of QbD, steps and tools for QbD implementation in pharmaceutics field, including risk assessment, design of experiment, and process analytical technology(PAT), are introduced briefly. Moreover, the concrete applications of QbD in various pharmaceutical related unit operations are summarized and presented.展开更多
During the period between 18 August and 22 September 2006, an ultraviolet photometric O3 analyzer, a NO-NO2-NOx chemiluminescence analyzer, and a quartz micro-oscillating-scale particle concentration analyzer were sim...During the period between 18 August and 22 September 2006, an ultraviolet photometric O3 analyzer, a NO-NO2-NOx chemiluminescence analyzer, and a quartz micro-oscillating-scale particle concentration analyzer were simultaneously used for monitoring at three different heights each at Beijing (325-m tower) and Tianjin (255-m tower). These towers belong to the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS) and to the Tianjin Municipal Meteorological Bureau, respectively. These measurements were used to continuously measure the atmospheric O3 and NOx volume-by-volume concentrations and the PM2.5 mass concentration within a vertical gradient. When combined with meteorological data and information on the variation of vertical characteristics of the various atmospheric pollutants in the two cities, analysis shows that these two cities were seriously polluted by both PM2.5 and O3 during summer and autumn. The highest daily-average concentrations of PM2.5 near the ground in Beijing and Tianjin reached 183 μgm a and 165 μg m^-3, respectively, while the 03 concentrations reached 52 ppb and 77 ppb, and NOx concentrations reached 48 ppb and 62 ppb for these two cities, respectively. The variations in the daily-average concentrations of PM2.5 between Beijing and Tianjin were demonstrated to be consistent over time. The concentrations of PM2.5 measured in Beijing were found to be higher than those in Tianjin. However, the overall O3 concentrations near the ground in Tianjin were higher than in Beijing. NOx concentrations in Tianjin were consistently lower than in Beijing. It was also found that PMz5 pollution in Beijing's atmosphere may also be affected by the pollutants originating in and delivered from Tianjin, and that Tianjin was impacted by Beijing's pollutants at a significantly reduced level.展开更多
In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering stru...In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.展开更多
Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases in soybean (Glycine max (L.) Merr.). SMV strain SC3 is the major prevalent strain in huang-huai and Yangtze valleys, China. The so...Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases in soybean (Glycine max (L.) Merr.). SMV strain SC3 is the major prevalent strain in huang-huai and Yangtze valleys, China. The soybean cultivar Qihuang 1 is of a rich resistance spectrum and has a wide range of application in breeding programs in China. In this study, F1, F2 and F2:3 from Qihuang 1×nannong 1138-2 were used to study inheritance and linkage mapping of the SC3 resistance gene in Qihuang 1. The secondary F2 population and near isogenic lines (nILs) derived from residual heterozygous lines (RhLs) of Qihuang 1×nannong 1138-2 were separatively used in the ifne mapping and candidate gene analysis of the resistance gene. Results indicated that a single dominant gene (designated RSC3Q) controls resistance, which was located on chromosome 13. Two genomic-simple sequence repeat (SSR) markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136 were found lfanking the two sides of the RSC3Q. The interval between the two markers was 651 kb. Quantitative real-time PCR analysis of the candidate genes showed that ifve genes (Glyma13g25730, 25750, 25950, 25970 and 26000) were likely involved in soybean SMV resistance. These results would have utility in cloning of RSC3Q resistance candidate gene and marker-assisted selection (MaS) in resistance breeding to SMV.展开更多
In this note, we design a velocity-altitude map for hypersonic level flight in near space of altitude 20-100 km. This map displays aerodynamic-related parameters associated with near space level flight, schematically ...In this note, we design a velocity-altitude map for hypersonic level flight in near space of altitude 20-100 km. This map displays aerodynamic-related parameters associated with near space level flight, schematically or quantitatively. Various physical conditions for the near-space level flight are then characterized, including laminar or turbulent flow, rarefaction or continuous flow, aerodynamic heating, as well as conditions for sustaining level flight with and without orbital effect. This map allows one to identify conditions to have soft flight or hard flight, and this identification would be helpful for making correct planning on detailed studies of aerodynamics or making initial design of near space vehicles.展开更多
The matching performance among the visible and near infrared coating.the low infrared emitting coating and the microwave absorbing coating was investigated.Experimental results show that the resulting malerial is char...The matching performance among the visible and near infrared coating.the low infrared emitting coating and the microwave absorbing coating was investigated.Experimental results show that the resulting malerial is characteristic of wideband effect ranging from the visible,near infrared and 3-5μm,8-14μm infrared protion of the spectrum,as well as the radar region from 8 to 18GHz when these three materials form αlayerstructure material system.The microwave absorbing ability of material is hardly changed.The resonance peak moves towards lower frequency as the thickness of the visible,near infrared coating and the low infrared emitting coating increases.This problem can be resolved by controlling the thickness of the matrial.On the other hand, the infrared emissivity εof the material system increases as the thickness of the visible,near infrared coating increases.This can be resolved by increasing infrared transparency of the visible and near infrared topcoating or controlling its thickness.The experimental resulting material system has spectral reflection characteristics in visible and near infrared regions that are similar to those of the natural background.展开更多
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed ve...In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility.展开更多
文摘Rice yield and heading date are two distinct traits controlled by quantitative trait loci (QTLs). The dissection of molecular mechanisms underlying rice yield traits is important for developing high-yielding rice varieties. Here, we report the cloning and characterization of Ghd8, a major QTL with pleiotropic effects on grain yield, heading date, and plant height. Two sets of near isogenic line populations were developed for the cloning of GhdS. Ghd8 was narrowed down to a 20-kb region containing two putative genes, of which one encodes the OsHAP3 subunit of a CCAAT-box binding protein (HAP complex); this gene was regarded as the Ghd8 candidate. A complementary test confirmed the identity and pleiotropic effects of the gene; interestingly, the genetic effect of Ghd8 was dependent on its genetic background. By regulating Ehdl, RFT1, and Hd3a, Ghd8 delayed flowering under long-day conditions, but promoted flowering under short-day conditions. Ghd8 up-regulated MOC1, a key gene controlling tillering and branching; this increased the number of tillers, primary and secondary branches, thus producing 50% more grains per plant. The ectopic expression of Ghd8 in Arabidopsis caused early flowering by 10 d-a situation similar to the one observed by its homolog AtHAP3b, when compared to wild-type under long-day conditions; these findings indicate the conserved function of Ghd8 and AtHAP3b in flowering in Arabidopsis. Our results demonstrated the important roles of Ghd8 in rice yield formation and flowering, as well as its opposite functions in flowering between rice and Arabidopsis under long-day conditions.
基金Project supported by the Swiss National Science Foundation
文摘Trivalent lanthanide ions display fascinating optical properties. The discovery of the corresponding elements and their first industrial uses were intimately linked to their optical properties. This relationship has been kept alive until today when many high-technology applications of lanthanide-containing materials such as energy-saving lighting devices, displays, optical fibers and amplifiers, lasers, responsive luminescent stains for biomedical analyses and in cellulo sensing and imaging, heavily rely on the brilliant and pure-color emission of lanthanide ions. In this review we first outlined the basics of lanthanide luminescence with emphasis on f-f transitions, the sensitization mechanisms, and the assessment of the luminescence efficiency of lanthanide-containing emissive molecular edifices. Emphasis was then put on two fast developing aspects of lanthanide luminescence: materials for telecommunications and light emitting diodes, and biomedical imaging and sensing. Recent advances in NIR-emitting materials for plastic amplifiers and waveguides were described, together with the main solutions brought by researchers to minimize non-radiative deactivation of excited states. The demonstration in 1999 that erbium tris(8-hydroxyquinolinate) displayed a bright green emission suitable for organic light emitting diodes (OLEDs) was followed by realizing that in OLEDs, 25% of the excitation energy leads to singlet states and 75% to triplet states. Since lanthanide ions are good triplet quenchers, they now also play a key role in the development of these lighting devices. Luminescence analyses of biological molecules are among the most sensitive analytical techniques known. The long lifetime of the lanthanide excited states allows time-resolved spectroscopy to be used, suppressing the sample autofluorescence and reaching very low detection limits. Not only visible lanthanide sensors are now ubiquitously provided in medical diagnosis and in cell imaging, but the feasibility of using NIR emission of ions such
基金supported by the National Natural Science Foundation of China(Grant Nos.41205080 and 41023002)National Program on Key Basic Research Project of China(2013CB956204)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110301)China R&D Special Fund for Public Welfare Industry(meteorology)(GYHY201306019)Public Science and Technology Research Funds(Projects of Ocean Grant No.201105019-3)
文摘Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980-2005) and another for near-future climate (2015-40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipi- tation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation. RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.
基金supported by grants from the National Natural Science Foundation of China (30921091,30830064)the National Special Program for Research of Transgenic Plants of China (2009ZX08009-103B)+1 种基金the National Program on the Development of Basic Research (2010CB125901)the National Special Key Project of China on Functional Genomics of Major Plants and Animals (2012AA100103)
文摘Grain yield is one of the most important indexes in rice breeding, which is governed by quantitative trait loci (QTLs). Different map- ping populations have been used to explore the QTLs controlling yield related traits. Primary populations such as F2 and recombi- nant inbred line populations have been widely used to discover QTLs in rice genome-wide, with hundreds of yield-related QTLs detected. Advanced populations such as near isogenic lines (NILs) are efficient to further fine-map and clone target QTLs. NILs for primarily identified QTLs have been proposed and confirmed to be the ideal population for map-based cloning. To date, 20 QTLs directly affecting rice grain yield and its components have been cloned with NIL-F2 populations, and 14 new grain yield QTLs havebeen validated in the NILs. The molecular mechanisms'of'a continuous/y increasing number of genes are being unveiled, which aids in the understanding of the formation of grain yield. Favorable alleles for rice breeding have been 'mined' from natural cultivars and wild rice by association analysis of known functional genes with target trait performance. Reasonable combination of favorable alleles has the potential to increase grain yield via use of functional marker assisted selection.
文摘Background/Aims: Juvenile myopia is a serious problem in China, the prevalence of which stays at a high level and shows an upward trend. The target of this study was to explore the factors associated with myopia in Chinese children. Methods: A cross-sectional analysis in a random sample survey was conducted in Beijing in 2008. The data collected from 15,316 Chinese school students aged 6 to 18 years, randomly selected from 19 schools were evaluated, including noncycloplegic refraction and possible genetic, environmental and behavioral factors, to explore the key risk factors for myopia. Univariate and multiple logistic regression analyses were performed to compare the OR values, and receiver operator characteristic (ROC) curves were generated to compare the differences among the areas under the ROC curves using the method of multiple comparison with the best. Results: Myopia was associated with shorter sleep times versus longer sleep times (adjusted OR = 3.37;95%CI 3.07-3.70), and the multivariate OR for two compared with no parents with myopic was 2.83 (95%CI 2.47-3.24) and 1.95 (95%CI 1.69-2.24) for reading or writing distances less than33 cmcompared to distances greater than33 cm. Controlling for other factors, children that slept for shorter periods of time had significantly more myopic refractions (?1.69D vs ?1.29D for children with longer sleeping time per day). Analysis of the areas under the ROC curves showed five variables with predictable values better than chance: age, sleeping time, reading or writing distance, hours of studying, and parental myopia. Conclusion: It was not surprising, as proved by other studies, that parental myopia, reading or writing distances, time spent on studying or other activities by using eyes were dominant risk factors associated with juvenile myopia. Our findings indicated that hours of sleeping were also closely related to juvenile myopia, in which the underlying mechanism should be explored in the future study.
基金co-supported by National Natural Science Foundation of China (Nos. 91116017, 60974106 and 11102080)Funding for Outstanding Doctoral Dissertation in NUAA (No. BCXJ10-04)
文摘An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.
基金supported by the State Administration of Forestry and Grass of the 948 Project of China(Grant No.2015-4-52)the support of the Fundamental Research Funds for the Central Universities(Grant No.2572017DB05)the support of the Natural Science Foundation of Heilongjiang Province(Grant No.C2017005)
文摘To improve the accuracy in recognizing defects on wood surfaces,a method fusing near infrared spectroscopy(NIR)and machine vision was examined.Larix gmelinii was selected as the raw material,and the experiments focused on the ability of the model to sort defects into four types:live knots,dead knots,pinholes,and cracks.Sample images were taken using an industrial camera,and a morphological algorithm was applied to locate the position of the defects.A portable near infrared spectrometer(900–1800 nm)collected the spectra of these positions.In addition,principal component analysis was utilized on these variables from spectral information and principal component vectors were extracted as the inputs of the model.The results show that a back propagation neural network model exhibited better discrimination accuracy of 92.7%for the training set and 92.0%for the test set.The research reveals that the NIR fusing machine vision is a feasible tool for detecting defects on board surfaces.
基金the USDA National Institute of Food and Agriculture McIntire Stennis project(IND011523MS).
文摘The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation assessment.This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band.Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite,aerial,and increasingly—Unmanned Aerial Systems(UAS).While studies have found that the NDVI is effective for expressing vegetation status andquantified vegetation attributes,its widespread use and popularity,especially in UAS applications,carry inherent risks of misuse with end users who received little to no remote sensing education.This article summarizes the progress of NDVI acquisition,highlights the areas of NDVI application,and addresses the critical problems and considerations in using NDVI.Detailed discussion mainly covers three aspects:atmospheric eff ect,saturation phenomenon,and sensor factors.The use of NDVI can be highly eff ective as long as its limitations and capabilities are understood.This consideration is particularly important to the UAS user community.
文摘Near infrared spectroscopy(NIRS)has been widely applied in both qualitative and quantitative analysis.There is growing interest in its application to traditional Chinese medicine(TCM)and a review of recent developments in the field is timely.To present an overview of recent applications of NIRS to the identification,classification and analysis of TCM products,studies describing the application of NIRS to TCM products are classified into those involving qualitative and quantitative analysis.In addition,the application of NIRS to the detection of illegal additives and the rapid assessment of quality of TCMs by fast inspection are also described.This review covers over 100 studies emphasizing the application of NIRS in different fields.Furthermore,basic analytical principles and specific examples are used to illustrate the feasibility and effectiveness of NIRS in pattern identification.NIRS provides an effective and powerful tool for the qualitative and quantitative analysis of TCM products.
基金Project supported by the National Key R&D Program of China(2017YFA0207303)National Science Fund for Distinguished Young Scholars(21725502)+1 种基金Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(17JC1400100)Intergovernmental International Cooperation Project of Science and Technology Commission of Shanghai Municipality(19490713100)。
文摘The second near-infrared(NIR-Ⅱ,1000-1700 nm)window provides a superior optical platform with high resolution,deep penetration and high signal-to-noise ratios(SNRs),which results from the intrinsic low scattering and auto fluorescence in biological tissues.As one of the promising NIR-Ⅱemitting probes,lanthanide based nanoparticles(LnNPs)exhibit high photo stability and chemostability,long photoluminescence lifetimes,low long-term cytotoxicity and narrow emission bandwidths.All these merits have spurred the evolution of related bio-optics and a variety of biomedical applications of LnNPs.This mini-review discusses the most recent advances in both the design-the composition and surface modifications-and the applications of NIR-Ⅱemitting LnNPs in bioimaging,disease diagnosis and therapy.We also summarize the current limits and challenges facing the applications of LnNPs as well as discuss the directions of future development.
基金Project(51174128)supported by the National Natural Science Foundation of ChinaProject(20123718110007)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Four different types of three-body model composed of rock and coal with different strength and stiffness were established in order to study the failure characteristics of compound model such as roof-coal-floor. Through stress analysis of the element with variable strength and stiffness extracted from the strong-weak interface, the tri-axial compressive strength of the weak body and strong body near the interface as well as the areas away from the contact surface was found. Then, on the basis of three-dimensional fast Lagrangian method of continua and strain softening constitutive model composed of Coulomb-Mohr shear failure with tensile cut-off, stress and strain relationship of the four three-body combined models were analyzed under different confining pressures by numerical simulation. Finally, the different features of local shear zones and plastic failure areas of the four different models and their development trend with increasing confining pressure were discussed. The results show that additional stresses are derived due to the lateral deformation constraints near the strong-weak interface area, which results in the strength increasing in weak body and strength decreasing in strong body. The weakly consolidated soft rock and coal cementation exhibit significant strain softening behavior and bear compound tension-shear failure under uni-axial compression. With the increase of confining pressure, the tensile failure disappears from the model, and the failure type of composed model changes to local shear failure with different number of shearing bands and plastic failure zones. This work shows important guiding significance for the mechanism study of seismic, rock burst, and coal bump.
基金financially supported by Talents Project of Liaoning Province, China (LR2013047)
文摘Quality by Test was the only way to guarantee quality of drug products before FDA launched current Good Manufacturing Practice. To clearly understand the manufacture processes, FDA generalized Quality by Design(QbD) in the field of pharmacy, which is based on the thorough understanding of how materials and process parameters affect the quality profile of final products. The application of QbD in drug formulation and process design is based on a good understanding of the sources of variability and the manufacture process. In this paper,the basic knowledge of QbD, the elements of QbD, steps and tools for QbD implementation in pharmaceutics field, including risk assessment, design of experiment, and process analytical technology(PAT), are introduced briefly. Moreover, the concrete applications of QbD in various pharmaceutical related unit operations are summarized and presented.
基金supported by the Beijing Municipal Commission for items including transportation and transformation of air pollutants in Beijing and its neighboring areasBeijing’s air quality objectives research+2 种基金the National Key Basic Research and Development Plan (973 project) (2007CB407303)the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (approved # KZCX1-YW-06-01)the Hi-tech Research and Development Program of China (Grant No.2006AA06A301)
文摘During the period between 18 August and 22 September 2006, an ultraviolet photometric O3 analyzer, a NO-NO2-NOx chemiluminescence analyzer, and a quartz micro-oscillating-scale particle concentration analyzer were simultaneously used for monitoring at three different heights each at Beijing (325-m tower) and Tianjin (255-m tower). These towers belong to the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS) and to the Tianjin Municipal Meteorological Bureau, respectively. These measurements were used to continuously measure the atmospheric O3 and NOx volume-by-volume concentrations and the PM2.5 mass concentration within a vertical gradient. When combined with meteorological data and information on the variation of vertical characteristics of the various atmospheric pollutants in the two cities, analysis shows that these two cities were seriously polluted by both PM2.5 and O3 during summer and autumn. The highest daily-average concentrations of PM2.5 near the ground in Beijing and Tianjin reached 183 μgm a and 165 μg m^-3, respectively, while the 03 concentrations reached 52 ppb and 77 ppb, and NOx concentrations reached 48 ppb and 62 ppb for these two cities, respectively. The variations in the daily-average concentrations of PM2.5 between Beijing and Tianjin were demonstrated to be consistent over time. The concentrations of PM2.5 measured in Beijing were found to be higher than those in Tianjin. However, the overall O3 concentrations near the ground in Tianjin were higher than in Beijing. NOx concentrations in Tianjin were consistently lower than in Beijing. It was also found that PMz5 pollution in Beijing's atmosphere may also be affected by the pollutants originating in and delivered from Tianjin, and that Tianjin was impacted by Beijing's pollutants at a significantly reduced level.
基金Federal Highway Administration(FHWA) Under Grant No.DTFH41-98900094
文摘In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.
基金supported by the National Natural Science Foundation of China (31171574, 31371646)the National Soybean Industrial Technology System of China (CARS-004)the Fund for Transgenic Breeding of Soybean Resistant to Soybean Mosaic Virus, China (2008ZX08004-004)
文摘Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases in soybean (Glycine max (L.) Merr.). SMV strain SC3 is the major prevalent strain in huang-huai and Yangtze valleys, China. The soybean cultivar Qihuang 1 is of a rich resistance spectrum and has a wide range of application in breeding programs in China. In this study, F1, F2 and F2:3 from Qihuang 1×nannong 1138-2 were used to study inheritance and linkage mapping of the SC3 resistance gene in Qihuang 1. The secondary F2 population and near isogenic lines (nILs) derived from residual heterozygous lines (RhLs) of Qihuang 1×nannong 1138-2 were separatively used in the ifne mapping and candidate gene analysis of the resistance gene. Results indicated that a single dominant gene (designated RSC3Q) controls resistance, which was located on chromosome 13. Two genomic-simple sequence repeat (SSR) markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136 were found lfanking the two sides of the RSC3Q. The interval between the two markers was 651 kb. Quantitative real-time PCR analysis of the candidate genes showed that ifve genes (Glyma13g25730, 25750, 25950, 25970 and 26000) were likely involved in soybean SMV resistance. These results would have utility in cloning of RSC3Q resistance candidate gene and marker-assisted selection (MaS) in resistance breeding to SMV.
基金supported by the National Natural Science Foundation of China (90716009)
文摘In this note, we design a velocity-altitude map for hypersonic level flight in near space of altitude 20-100 km. This map displays aerodynamic-related parameters associated with near space level flight, schematically or quantitatively. Various physical conditions for the near-space level flight are then characterized, including laminar or turbulent flow, rarefaction or continuous flow, aerodynamic heating, as well as conditions for sustaining level flight with and without orbital effect. This map allows one to identify conditions to have soft flight or hard flight, and this identification would be helpful for making correct planning on detailed studies of aerodynamics or making initial design of near space vehicles.
文摘The matching performance among the visible and near infrared coating.the low infrared emitting coating and the microwave absorbing coating was investigated.Experimental results show that the resulting malerial is characteristic of wideband effect ranging from the visible,near infrared and 3-5μm,8-14μm infrared protion of the spectrum,as well as the radar region from 8 to 18GHz when these three materials form αlayerstructure material system.The microwave absorbing ability of material is hardly changed.The resonance peak moves towards lower frequency as the thickness of the visible,near infrared coating and the low infrared emitting coating increases.This problem can be resolved by controlling the thickness of the matrial.On the other hand, the infrared emissivity εof the material system increases as the thickness of the visible,near infrared coating increases.This can be resolved by increasing infrared transparency of the visible and near infrared topcoating or controlling its thickness.The experimental resulting material system has spectral reflection characteristics in visible and near infrared regions that are similar to those of the natural background.
文摘In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility.