The behavior of the ionosphere before the Wenchuan earthquake is analyzed with the global TEC and ionospheric foF2 observed at Xiamen. It can be found from TEC maps that in the afternoon (16―18LT) on May 9, 2008, 3 d...The behavior of the ionosphere before the Wenchuan earthquake is analyzed with the global TEC and ionospheric foF2 observed at Xiamen. It can be found from TEC maps that in the afternoon (16―18LT) on May 9, 2008, 3 days before the earthquake, there is an enhancement of TEC with an amplitude of 10―15 TECU appearing in the east-south direction of Wenchuan, and another enhancement appears at the conjugate region of the Southern Hemisphere with an amplitude of 10 TECU, but no obvious in-crement or decrement can be seen in other regions on global scale. It can also be found that on May 6 (6 days before the great earthquake), there is a decrement of TEC with small amplitude of 4TECU and larger area with 80° along the longitude in southern China, and there is no synchronous decrement observed at the conjugate region of the Southern Hemisphere. There are also many anomalies ob-served by ionosondes across China. The result shows that foF2 and TEC abnormally increased, which is different from pervious results that ionospheric parameters decreased prior to earthquakes. Pre-liminary results suggest that the enhancement on May 9 maybe has a close relationship with the pos-sible enhancement of ionospheric electric fields, and it may be an ionospheric precursor of earth-quakes. Whereas the decrement on May 6 may be attributed to the geomagnetic disturbance appearing on May 5.展开更多
On February 12,2014,a large Mw7. 3 earthquake occurred in Yutian of Xijiang Province,China.We processed the global ionosphere maps provided by CODE( the Center for Orbit Determination in Europe)and the foF2( the cr...On February 12,2014,a large Mw7. 3 earthquake occurred in Yutian of Xijiang Province,China.We processed the global ionosphere maps provided by CODE( the Center for Orbit Determination in Europe)and the foF2( the critical frequency of F2-layer) data of Chongqing ionosonde station to analyze the preearthquake ionospheric anomalies. Solar activities and magnetic storm were checked by the sliding inter quartile range method to remove their effects on the ionosphere. A positive ionospheric anomaly with the large amplitude of 20 TECU was observed near the epicenter on February 3( 10th day before the earthquake). In addition,the foF2 at Chongqing station had an unusual increase of more than 40% on the day,which was consistent with the TEC( Total Electron Content) anomaly. The global disturbance represents that the peak of TEC anomaly didn’t coincide with the vertical projection of epicenter. The TEC anomalous area was closer to the equator,and it mainly occurred from local time 16 ∶ 00 to 20 ∶ 00. An enhancement of TEC with the small amplitude also appeared in the magnetically conjugated region.展开更多
Four extreme ultraviolet(EUV)solar radiation proxies(Magnesium II core-to-wing ratio(MgII),Lymanαflux(Fα),10.7-cm solar radio flux(F10.7),and sunspot number(Rz))were analyzed during the last four consecutive solar a...Four extreme ultraviolet(EUV)solar radiation proxies(Magnesium II core-to-wing ratio(MgII),Lymanαflux(Fα),10.7-cm solar radio flux(F10.7),and sunspot number(Rz))were analyzed during the last four consecutive solar activity minima to investigate how they differ during minimum periods and how well they represent solar EUV radiation.Their variability within each minimum and between minima was compared by considering monthly means.A comparison was also made of their role in filtering the effect of solar activity from the critical frequency of the ionospheric F2 layer,foF2,which at mid to low latitudes depends mainly on EUV solar radiation.The last two solar cycles showed unusually low EUV radiation levels according to the four proxies.Regarding the connection between the EUV“true”variation and that of solar proxies,according to the foF2 filtering analysis,MgII and Fαbehaved in a more stable and suitable way,whereas Rz and F10.7 could be overestimating EUV levels during the last two minima,implying they would both underestimate the inter-minima difference of EUV when compared with the first two minima.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 40504023)National High-Tech Research Program of China (Grant No. 500009003)
文摘The behavior of the ionosphere before the Wenchuan earthquake is analyzed with the global TEC and ionospheric foF2 observed at Xiamen. It can be found from TEC maps that in the afternoon (16―18LT) on May 9, 2008, 3 days before the earthquake, there is an enhancement of TEC with an amplitude of 10―15 TECU appearing in the east-south direction of Wenchuan, and another enhancement appears at the conjugate region of the Southern Hemisphere with an amplitude of 10 TECU, but no obvious in-crement or decrement can be seen in other regions on global scale. It can also be found that on May 6 (6 days before the great earthquake), there is a decrement of TEC with small amplitude of 4TECU and larger area with 80° along the longitude in southern China, and there is no synchronous decrement observed at the conjugate region of the Southern Hemisphere. There are also many anomalies ob-served by ionosondes across China. The result shows that foF2 and TEC abnormally increased, which is different from pervious results that ionospheric parameters decreased prior to earthquakes. Pre-liminary results suggest that the enhancement on May 9 maybe has a close relationship with the pos-sible enhancement of ionospheric electric fields, and it may be an ionospheric precursor of earth-quakes. Whereas the decrement on May 6 may be attributed to the geomagnetic disturbance appearing on May 5.
基金supported by the National Basic Research Program of China(2013CB733302)the National Natural Science Foundation of China(41374009)+1 种基金the Public Benefit Scientific Research Project of China(201412001)the Natural Science Foundation of Shandong Province,China(ZR2013DM009)
文摘On February 12,2014,a large Mw7. 3 earthquake occurred in Yutian of Xijiang Province,China.We processed the global ionosphere maps provided by CODE( the Center for Orbit Determination in Europe)and the foF2( the critical frequency of F2-layer) data of Chongqing ionosonde station to analyze the preearthquake ionospheric anomalies. Solar activities and magnetic storm were checked by the sliding inter quartile range method to remove their effects on the ionosphere. A positive ionospheric anomaly with the large amplitude of 20 TECU was observed near the epicenter on February 3( 10th day before the earthquake). In addition,the foF2 at Chongqing station had an unusual increase of more than 40% on the day,which was consistent with the TEC( Total Electron Content) anomaly. The global disturbance represents that the peak of TEC anomaly didn’t coincide with the vertical projection of epicenter. The TEC anomalous area was closer to the equator,and it mainly occurred from local time 16 ∶ 00 to 20 ∶ 00. An enhancement of TEC with the small amplitude also appeared in the magnetically conjugated region.
基金Research Project Numbers PIUNT E642 and PIP 2957supported by National Science Foundation Grant Number AGS-2152365
文摘Four extreme ultraviolet(EUV)solar radiation proxies(Magnesium II core-to-wing ratio(MgII),Lymanαflux(Fα),10.7-cm solar radio flux(F10.7),and sunspot number(Rz))were analyzed during the last four consecutive solar activity minima to investigate how they differ during minimum periods and how well they represent solar EUV radiation.Their variability within each minimum and between minima was compared by considering monthly means.A comparison was also made of their role in filtering the effect of solar activity from the critical frequency of the ionospheric F2 layer,foF2,which at mid to low latitudes depends mainly on EUV solar radiation.The last two solar cycles showed unusually low EUV radiation levels according to the four proxies.Regarding the connection between the EUV“true”variation and that of solar proxies,according to the foF2 filtering analysis,MgII and Fαbehaved in a more stable and suitable way,whereas Rz and F10.7 could be overestimating EUV levels during the last two minima,implying they would both underestimate the inter-minima difference of EUV when compared with the first two minima.