A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this wi...A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this will lead to large number density of ionizing photons in the epoch of reionization(EoR),so that the reionization history will be changed,which can arise tension with the current EoR observations.Warm dark matter(WDM),via the free streaming effect,can suppress the formation of small-scale structure as well as low-mass galaxies.This provides an effective way to decrease the ionizing photons when considering a large star formation efficiency in high-z massive galaxies without altering the cosmic reionization history.On the other hand,the constraints on the properties of WDM can be derived from the JWST observations.In this work,we study WDM as a possible solution to reconcile the JWST stellar mass density of high-z massive galaxies and reionization history.We find that,the JWST high-z comoving cumulative stellar mass density alone has no significant preference for either CDM or WDM model.But using the observational data of other stellar mass density measurements and reionization history,we obtain that the WDM particle mass with mw=0.51_(-0.12)^(+0.22) keV and star formation efficiency parameter f_(*)^(0)> 0.39 in 2σ confidence level can match both the JWST high-z comoving cumulative stellar mass density and the reionization history.展开更多
Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of ...Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of GRBs can be used to estimate the cosmological parameters. However, the possibility of the evolution of GRBs with redshift is a long-standing puzzle. In this work, we used 162 long-duration GRBs to determine whether GRBs below and above a certain redshift have different properties. The GRBs are split into two groups, and we fit the Amati relation for each group separately. Our findings demonstrate that estimations of the Amati parameters for the two groups are substantially dissimilar. We perform simulations to investigate whether the selection effects could cause the difference. Our analysis shows that the differences may be either intrinsic or due to systematic errors in the data, and the selection effects are not their true origin. However, in-depth analysis with a new data set comprised of 119 long GRBs shows that intrinsic scatter may partly be responsible for such effects.展开更多
Cross-correlating the data on neutral hydrogen(HⅠ)21 cm intensity mapping with galaxy surveys is an effective method to extract astrophysical and cosmological information.In this work,we investigate the cross-correla...Cross-correlating the data on neutral hydrogen(HⅠ)21 cm intensity mapping with galaxy surveys is an effective method to extract astrophysical and cosmological information.In this work,we investigate the cross-correlation of MeerKAT single-dish mode HⅠintensity mapping and China Space Station Telescope(CSST)spectroscopic galaxy surveys.We simulate a survey area of~300 deg~2 of MeerKAT and CSST surveys at z=0.5 using MultiDark N-body simulation.The PC A algorithm is applied to remove the foregrounds of HⅠintensity mapping,and signal compensation is considered to solve the signal loss problem in HⅠ-galaxy cross power spectrum caused by the foreground removal process.We find that from CSST galaxy auto and MeerKAT-CSST cross power spectra,the constraint accuracy of the parameter productΩ_(HⅠ)b_(HⅠ)r_(HⅠ,g)can reach~1%,which is about one order of magnitude higher than the current results.After performing the full MeerKAT HⅠintensity mapping survey with5000 deg~2 survey area,the accuracy can be enhanced to<0.3%.This implies that the MeerKAT-CSST cross-correlation can be a powerful tool to probe the cosmic HⅠproperty and the evolution of galaxies and the Universe.展开更多
The holographic dark energy models provide an alternative description of dark energy.These models are motivated by the possible application of the holographic principle to the dark energy problem.In this work,we prese...The holographic dark energy models provide an alternative description of dark energy.These models are motivated by the possible application of the holographic principle to the dark energy problem.In this work,we present a theoretical study of the one parameter Li holographic dark energy and the two parameter Barrow holographic dark energy models using configuration entropy of the matter distribution in the universe.The configuration entropy rate exhibits a distinct minimum at a specific scale factor that corresponds to the epoch,beyond which dark energy takes a driving role in the accelerated expansion of the universe.We find that the location of the minimum and magnitude of the entropy rate at the minimum are sensitive to the parameters of the models.We find the best fit relations between these quantities and the parameters of each model.We propose that these relations can be used to constrain the parameters of the holographic dark energy models from future observations such as the SKA.Our study suggests that the signature of a large quantum gravitational effect on the future event horizon can be detected from measurements of the configuration entropy of the matter distribution at multiple redshifts.展开更多
We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstr...We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.展开更多
Observations are beginning to constrain the history of the epoch of reionization(EoR).Modeling the reionization process is indispensable to interpret the observations,to infer the properties of ionizing sources,and to...Observations are beginning to constrain the history of the epoch of reionization(EoR).Modeling the reionization process is indispensable to interpret the observations,to infer the properties of ionizing sources,and to probe the various astrophysical processes from the observational data.Here we present an improved version of the seminumerical simulation islandFAST,by incorporating inhomogeneous recombinations and a corresponding inhomogeneous ionizing background,and simulate the reionization process of neutral islands during the late EoR.We find that the islands are more fragmented in models with inhomogeneous recombinations than the case with a homogeneous recombination number.In order to investigate the effects of basic assumptions in the reionization modeling,we compare the results from islandFAST with those from 21cmFAST for the same assumptions on the ionizing photon sources and sinks,to find how the morphology of the ionization field and the reionization history depend on the different treatments of these two models.Such systematic bias should be noted when interpreting the upcoming observations.展开更多
We study the color and star formation rates of paired galaxies in filaments and sheets using the EAGLE simulations.We find that the major pairs with pair separation<50 kpc are bluer and more star-forming in filamen...We study the color and star formation rates of paired galaxies in filaments and sheets using the EAGLE simulations.We find that the major pairs with pair separation<50 kpc are bluer and more star-forming in filamentary environments compared to those hosted in sheet-like environments.This trend reverses beyond a pair separation of~50 kpc.The interacting pairs with larger separations(>50 kpc)in filaments are on average redder and low-star-forming compared to those embedded in sheets.The galaxies in filaments and sheets may have different stellar mass and cold gas mass distributions.Using a KS test,we find that for paired galaxies with pair separation<50 kpc,there are no significant differences in these properties in sheets and filaments.The filaments transport gas toward the cluster of galaxies.Some earlier studies find preferential alignment of galaxy pairs with the filament axis.Such alignment of galaxy pairs may lead to different gas accretion efficiency in galaxies residing in filaments and sheets.We propose that the enhancement of star formation rate at smaller pair separation in filaments is caused by the alignment of galaxy pairs.A recent study with SDSS data reports the same findings.The confirmation of these results by the EAGLE simulations suggests that the hydrodynamical simulations are powerful theoretical tools for studying galaxy formation and evolution in the cosmic web.展开更多
The China Space Station Telescope(CSST) photometric survey aims to perform a high spatial resolution(~0.″ 15)photometric imaging for the targets that cover a large sky area(~17,500 deg^(2)) and wide wavelength range(...The China Space Station Telescope(CSST) photometric survey aims to perform a high spatial resolution(~0.″ 15)photometric imaging for the targets that cover a large sky area(~17,500 deg^(2)) and wide wavelength range(from NUV to NIR). It expects to explore the properties of dark matter, dark energy, and other important cosmological and astronomical areas. In this work, we evaluate whether the filter design of the Multi-channel Imager(MCI), one of the five instruments of the CSST, can provide accurate photometric redshift(photoz) measurements with its nine medium-band filters to meet the relevant scientific objectives. We generate the mock data based on the COSMOS photometric redshift catalog with astrophysical and instrumental effects. The application of upper limit information of low signal-to-noise ratio data is adopted in the estimation of photoz. We investigate the dependency of photoz accuracy on the filter parameters, such as band position and width. We find that the current MCI filter design can achieve good photoz measurements with accuracy σ_(z)■ 0.017 and outlier fraction f_(c)■ 2.2%. It can effectively improve the photoz measurements of the main CSST survey using the Survey Camera to an accuracy σ_(z)■ 0.015 and outlier fraction f_(c)■ 1.5%. This indicates that the original MCI filters are proper for the photoz calibration.展开更多
Galaxy photometric redshift(photoz)is crucial in cosmological studies,such as weak gravitational lensing and galaxy angular clustering measurements.In this work,we try to extract photoz information and construct its p...Galaxy photometric redshift(photoz)is crucial in cosmological studies,such as weak gravitational lensing and galaxy angular clustering measurements.In this work,we try to extract photoz information and construct its probability distribution function(PDF)using the Bayesian neural networks from both galaxy flux and image data expected to be obtained by the China Space Station Telescope(CSST).The mock galaxy images are generated from the Hubble Space Telescope-Advanced Camera for Surveys(HST-ACS)and COSMOS catalogs,in which the CSST instrumental effects are carefully considered.In addition,the galaxy flux data are measured from galaxy images using aperture photometry.We construct a Bayesian multilayer perceptron(B-MLP)and Bayesian convolutional neural network(B-CNN)to predict photoz along with the PDFs from fluxes and images,respectively.We combine the B-MLP and B-CNN together,and construct a hybrid network and employ the transfer learning techniques to investigate the improvement of including both flux and image data.For galaxy samples with signal-to-noise ratio(SNR)>10 in g or i band,we find the accuracy and outlier fraction of photoz can achieve σ_(NMAD)=0.022 and η=2.35% for the B-MLP using flux data only,and σ_(NMAD)=0.022 and η=1.32% for the B-CNN using image data only.The Bayesian hybrid network can achieve σ_(NMAD)=0.021 and η=1.23%,and utilizing transfer learning technique can improve results to σ_(NMAD)=0.019 and η=1.17%,which can provide the most confident predictions with the lowest average uncertainty.展开更多
The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to...The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes(BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors;hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.展开更多
Applying functional differentiation to the density field with Newtonian gravity,we obtain the static,nonlinear equation of the three-point correlation functionζof galaxies to the third order density perturbations.We ...Applying functional differentiation to the density field with Newtonian gravity,we obtain the static,nonlinear equation of the three-point correlation functionζof galaxies to the third order density perturbations.We make the equation closed and perform renormalization of the mass and the Jeans wavenumber.Using the boundary condition inferred from observations,we obtain the third order solutionζ(r,u,θ)at fixed u=2,which is positive,exhibits a Ushape along the angleθ,and decreases monotonously along the radial r up to the range r≤30 h^(-1)Mpc in our computation.The corresponding reduced Q(r,u,θ)deviates from 1 of the Gaussian case,has a deeper U-shape alongθ,and varies non-monotonously along r.The third order solution agrees with the SDSS data of galaxies,quite close to the previous second order solution,especially at large scales.This indicates that the equations of correlation functions with increasing orders of density perturbation provide a stable description of the nonlinear galaxy system.展开更多
The power spectrum of the two-degree Field Galaxy Redshift Survey (2dFGRS) sample is estimated with the discrete wavelet transform (DWT) method. The DWT power spectra within 0.035 〈 k 〈 2.2 h Mpc^-1 are measured...The power spectrum of the two-degree Field Galaxy Redshift Survey (2dFGRS) sample is estimated with the discrete wavelet transform (DWT) method. The DWT power spectra within 0.035 〈 k 〈 2.2 h Mpc^-1 are measured for three volume-limited samples defined in consecutive absolute magnitude bins - 19 - - 18, - 20 - - 19 and - 21 - - 20. We show that the DWT power spectrum can effectively distinguish ACDM models of σ8 = 0.84 and σ8 = 0.74. We adopt maximum likelihood method to perform three-parameter fitting of the bias parameter b, pairwise velocity dispersion σpv and redshift distortion parameterβ = Ωm^0.6/b to the measured DWT power spectrum. The fitting results state that in a σ8 = 0.84 universe the best-fit values of Ωm given by the three samples are mutually consistent within the range 0.28 - 0.36, and the best fitted values of Opv are 398-27^+35, 475-29^37 and 550 ± 20 km s^-1 for the three samples, respectively. In the model of σ8 = 0.74, our three samples give very different values of Ωm. We repeated the fitting using the empirical formula of redshift distortion. The result of the model of low σ8 is still poor, especially, one of the best-fit values of σpv is as large as 10^3 km s^-1. We also repeated our fitting by incorporating a scale-dependent galaxy bias. This gave a slightly lower value of Ωm. Differences between the models of σ8 = 0.84 and σ8 = 0.74 still exist in the fitting results. The power spectrum of 2dFGRS seems to disfavor models with low amplitude of density fluctuations if the bias parameter is assumed to be scale independent. For the fitting value of Ωm to be consistent with that given by WMAP3, strong scale dependence of the bias parameters is needed.展开更多
Massive neutrinos are expected to affect the large-scale structure formation,including the major component of solid substances,dark matter halos.How halos are influenced by neutrinos is vital and interesting,and angul...Massive neutrinos are expected to affect the large-scale structure formation,including the major component of solid substances,dark matter halos.How halos are influenced by neutrinos is vital and interesting,and angular momentum(AM)as a significant feature provides a statistical perspective for this issue.Exploring halos from TianNu N-body cosmological simulation with the co-evolving neutrino particles,we obtain some concrete conclusions.First,by comparing the same halos with and without neutrinos,in contrast to the neutrino-free case,over 89.71%of halos have smaller halo moduli,over 71.06%have smaller particle-mass-reduced(PMR)AM moduli,and over 95.44%change their orientations of less than 0°.65.Moreover,the relative variation of PMR modulus is more visible for low-mass halos.Second,to explore the PMR moduli of halos in dense or sparse areas,we divide the whole box into big cubes,and search for halos within a small spherical cell in a single cube.From the two-level divisions,we discover that in denser cubes,the variation of PMR moduli with massive neutrinos decreases more significantly.This distinction suggests that neutrinos exert heavier influence on halos'moduli in compact regions.With massive neutrinos,most halos(86.60%)have lower masses than without neutrinos.展开更多
Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments ...Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.展开更多
The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analy...The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analytical fitting. Observational evidence for a cellular universe is briefly reviewed. A simulated Vp(2, 3) map with galaxies lying on the cell boundaries is constructed to compare, as regards general appearance, with the observed CfA map of galaxies and voids, the parameters of the simulation being so chosen as to reproduce the largest observed void size.展开更多
The mass density distribution of Newtonian self-gravitating systems is studied analytically in the field theoretical method. Modeling the system as a fluid in hydrostatic equilibrium, we apply Schwinger's function...The mass density distribution of Newtonian self-gravitating systems is studied analytically in the field theoretical method. Modeling the system as a fluid in hydrostatic equilibrium, we apply Schwinger's functional derivative on the average of the field equation of mass density, and obtain the field equation of 2-point correlation function ξ(r) of the mass density fluctuation, which includes the next order of nonlinearity beyond the Gaussian approximation. The 3-point correlation occurs hierarchically in the equation,and is cut off by the Groth-Peebles ansatz, making it closed. We perform renormalization and write the equation with three nonlinear coefficients. The equation tells us that ξ depends on the point mass m and the Jeans wavelength scale λ_0, which are different for galaxies and clusters. Applying this to large scale structures, it predicts that the profile of ξcc for clusters is similar to ξgg for galaxies but with a higher amplitude, and that the correlation length increases with the mean separation between clusters, i.e., a scaling behavior r_0■0.4 d. The solution yields the galaxy correlation ξ_(gg)(r)■(r_0/r)^(1.7) valid only in a range1 < r < 10 h^(-1) Mpc. At larger scales the solution ξgg deviates below the power law and goes to zero around ~50 h^(-1) Mpc, just as the observations show. We also derive the field equation of the 3-point correlation function in the Gaussian approximation and its analytical solution, for which the Groth-Peebles ansatz with Q = 1 holds.展开更多
The alignment between satellite and central galaxies serves as a proxy for addressing the issue of galaxy formation and evolution, and has been investigated abundantly in observations and theoretical works.Most scenar...The alignment between satellite and central galaxies serves as a proxy for addressing the issue of galaxy formation and evolution, and has been investigated abundantly in observations and theoretical works.Most scenarios indicate that the satellites preferentially are located along the major axis of their central galaxy. Recent work shows that the strength of alignment signals depends on the large-scale environment in observations. We use the publicly-released data from EAGLE to figure out whether the same effect can be found in the associated hydrodynamic simulation. We found much stronger environmental dependency of alignment signals in the simulation. We also explore change of alignments to address the formation of this effect.展开更多
The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale...The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale structure distribution of galaxies and quasars, which could be used for constraining it. We study the detection limits of PNG from the surveys of the LAMOST telescope. The cases of the main galaxy survey, the luminous red galaxy (LRG) survey, and the quasar survey of dif- ferent magnitude limits are considered. We find that the Mainl sample (i.e. the main galaxy survey which is one magnitude deeper than the SDSS main galaxy survey, or r 〈 18.8) could only provide a very weak constraint on PNG. For the Main2 sample (r 〈 19.8) and the LRG survey, the 2or (95.5%) limits on the PNG parameter fNL are | fNL|〈 145 and | fNL| 〈 114 respectively, which are comparable to the current limit from cosmic microwave background (CMB) data. The quasar survey could provide a much more stringent constraint, and we find that the 2a limit for |fNL| is between 50 and 103, depending on the magnitude limit of the survey. With Planck-like priors on cosmological parameters, the quasar survey with g 〈 21.65 would improve the constraint to I fNLI 〈 43 (2or). We also discuss the possibility of further tightening the constraint by using the relative bias method proposed by Seljak.展开更多
Based on the field theory of density fiuctuation under Newtonian gravity,we obtain analytically the nonlinear equation of 3-pt correlation functionζof galaxies in a homogeneous,isotropic,static universe.The density f...Based on the field theory of density fiuctuation under Newtonian gravity,we obtain analytically the nonlinear equation of 3-pt correlation functionζof galaxies in a homogeneous,isotropic,static universe.The density fiuctuation has been kept up to second order.By the Fry-Peebles ansatz and the Groth-Peebles ansatz,the equation ofζbecomes closed and differs from the Gaussian approximate equation.Using the boundary condition inferred from the data of SDSS,we obtain the solutionζ(r,u,θ)at fixed u=2,which exhibits a shallow U-shape along the angleθand,nevertheless,decreases monotonously along the radial r.We show its difference with the Gaussian solution.As a direct criterion of non-Gaussianity,the reduced Q(r,u,θ)deviates from the Gaussianity plane Q=1,exhibits a deeper U-shape alongθand varies weakly along r,agreeing with the observed data.展开更多
The line-of-sight peculiar velocities are good indicators of the gravitational fluctuation of the density field.Techniques have been developed to extract cosmological information from the peculiar velocities in order ...The line-of-sight peculiar velocities are good indicators of the gravitational fluctuation of the density field.Techniques have been developed to extract cosmological information from the peculiar velocities in order to test cosmological models.These techniques include measuring cosmic flow,measuring two-point correlation and power spectrum of the peculiar velocity fields,and reconstructing the density field using peculiar velocities.However,some measurements from these techniques are biased due to the nonGaussianity of the estimated peculiar velocities.Therefore,we rely on the 2MTF survey to explore a power transform that can Gaussianize the estimated peculiar velocities.We find a tight linear relation between the transformation parameters and the measurement errors of log-distance ratio.To show an example for the implementation of Gaussianized peculiar velocities in cosmology,we develop a bulk flow estimator and estimate bulk flow from the Gaussianized peculiar velocities.We use 2MTF mocks to test the algorithm,and we find the algorithm yields unbiased measurements.We also find this technique gives smaller measurement errors compared to other techniques.In Galactic coordinates,at the depth of 30 h^(-1)Mpc,we measure a bulk flow of 332±27 km s^(-1) in the direction(l,b)=(293°±5°,13°±4°).The measurement is consistent with theΛCDM prediction.展开更多
基金support of the National Key R&D Program of China No. 2022YFF0503404, 2020SKA0110402,MOST-2018YFE0120800,NSFC-11822305, NSFC-11773031,NSFC-11633004, NSFC-11473044, NSFC-11973047the CAS Project for Young Scientists in Basic Research (No. YSBR-092)+1 种基金the Chinese Academy of Sciences grants QYZDJ-SSWSLH017, XDB 23040100, and XDA15020200supported by the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01 and CMS-CSST-2021-A01。
文摘A significant excess of the stellar mass density at high redshift has been discovered from the early data release of James Webb Space Telescope(JWST),and it may require a high star formation efficiency.However,this will lead to large number density of ionizing photons in the epoch of reionization(EoR),so that the reionization history will be changed,which can arise tension with the current EoR observations.Warm dark matter(WDM),via the free streaming effect,can suppress the formation of small-scale structure as well as low-mass galaxies.This provides an effective way to decrease the ionizing photons when considering a large star formation efficiency in high-z massive galaxies without altering the cosmic reionization history.On the other hand,the constraints on the properties of WDM can be derived from the JWST observations.In this work,we study WDM as a possible solution to reconcile the JWST stellar mass density of high-z massive galaxies and reionization history.We find that,the JWST high-z comoving cumulative stellar mass density alone has no significant preference for either CDM or WDM model.But using the observational data of other stellar mass density measurements and reionization history,we obtain that the WDM particle mass with mw=0.51_(-0.12)^(+0.22) keV and star formation efficiency parameter f_(*)^(0)> 0.39 in 2σ confidence level can match both the JWST high-z comoving cumulative stellar mass density and the reionization history.
基金M.S.thanks DMRC for supportD.S.thanks the compeers of GD Goenka University for continuing assistance.
文摘Gamma-ray bursts(GRBs) are among the brightest objects in the Universe and, hence, can be observed up to a very high redshift. Properly calibrated empirical correlations between intensity and spectral correlations of GRBs can be used to estimate the cosmological parameters. However, the possibility of the evolution of GRBs with redshift is a long-standing puzzle. In this work, we used 162 long-duration GRBs to determine whether GRBs below and above a certain redshift have different properties. The GRBs are split into two groups, and we fit the Amati relation for each group separately. Our findings demonstrate that estimations of the Amati parameters for the two groups are substantially dissimilar. We perform simulations to investigate whether the selection effects could cause the difference. Our analysis shows that the differences may be either intrinsic or due to systematic errors in the data, and the selection effects are not their true origin. However, in-depth analysis with a new data set comprised of 119 long GRBs shows that intrinsic scatter may partly be responsible for such effects.
基金the support of 2020SKA0110402,MOST-2018YFE0120800National Key R&D Program of China No.2022YFF0503404+5 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.11822305,11773031 and 11633004)support of the National Natural Science Foundation of China(NSFC,Grant Nos.11473044 and 11973047)the Chinese Academy of Sciences grants QYZDJ-SSW-SLH017,XDB23040100,XDA15020200supported by the National Research Foundation of South Africa under Grant Nos.150580,120385 and 120378NIThe CS program“New Insights into Astrophysics and Cosmology with Theoretical Models confronting Observational Data”supported by the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01 and CMS-CSST-2021-A01。
文摘Cross-correlating the data on neutral hydrogen(HⅠ)21 cm intensity mapping with galaxy surveys is an effective method to extract astrophysical and cosmological information.In this work,we investigate the cross-correlation of MeerKAT single-dish mode HⅠintensity mapping and China Space Station Telescope(CSST)spectroscopic galaxy surveys.We simulate a survey area of~300 deg~2 of MeerKAT and CSST surveys at z=0.5 using MultiDark N-body simulation.The PC A algorithm is applied to remove the foregrounds of HⅠintensity mapping,and signal compensation is considered to solve the signal loss problem in HⅠ-galaxy cross power spectrum caused by the foreground removal process.We find that from CSST galaxy auto and MeerKAT-CSST cross power spectra,the constraint accuracy of the parameter productΩ_(HⅠ)b_(HⅠ)r_(HⅠ,g)can reach~1%,which is about one order of magnitude higher than the current results.After performing the full MeerKAT HⅠintensity mapping survey with5000 deg~2 survey area,the accuracy can be enhanced to<0.3%.This implies that the MeerKAT-CSST cross-correlation can be a powerful tool to probe the cosmic HⅠproperty and the evolution of galaxies and the Universe.
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110IUCAA,Pune for providing support through associateship program。
文摘The holographic dark energy models provide an alternative description of dark energy.These models are motivated by the possible application of the holographic principle to the dark energy problem.In this work,we present a theoretical study of the one parameter Li holographic dark energy and the two parameter Barrow holographic dark energy models using configuration entropy of the matter distribution in the universe.The configuration entropy rate exhibits a distinct minimum at a specific scale factor that corresponds to the epoch,beyond which dark energy takes a driving role in the accelerated expansion of the universe.We find that the location of the minimum and magnitude of the entropy rate at the minimum are sensitive to the parameters of the models.We find the best fit relations between these quantities and the parameters of each model.We propose that these relations can be used to constrain the parameters of the holographic dark energy models from future observations such as the SKA.Our study suggests that the signature of a large quantum gravitational effect on the future event horizon can be detected from measurements of the configuration entropy of the matter distribution at multiple redshifts.
基金the support from the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01supported by the World Premier International Research Center Initiative(WPI),MEXT,Japan+12 种基金the Ontario Research Fund:Research Excellence Program(ORF-RE)Natural Sciences and Engineering Research Council of Canada(NSERC)[funding reference number RGPIN-2019-067,CRD 523638-201,555585-20]Canadian Institute for Advanced Research(CIFAR)Canadian Foundation for Innovation(CFI)the National Natural Science Foundation of China(NSFC,Grant No.11929301)Simons FoundationThoth Technology IncAlexander von Humboldt Foundationthe Niagara supercomputers at the SciNet HPC Consortiumthe Canada Foundation for Innovationthe Government of OntarioOntario Research Fund—Research Excellencethe University of Toronto。
文摘We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.
基金supported by the National Key R&D Program of China No.2018YFE0120800the National Natural Science Foundation of China grant No.11973047+1 种基金the National Key R&D Program of China No.2022YFF0504300the National SKA Program of China Nos.2020SKA0110401,and 2020SKA0110402。
文摘Observations are beginning to constrain the history of the epoch of reionization(EoR).Modeling the reionization process is indispensable to interpret the observations,to infer the properties of ionizing sources,and to probe the various astrophysical processes from the observational data.Here we present an improved version of the seminumerical simulation islandFAST,by incorporating inhomogeneous recombinations and a corresponding inhomogeneous ionizing background,and simulate the reionization process of neutral islands during the late EoR.We find that the islands are more fragmented in models with inhomogeneous recombinations than the case with a homogeneous recombination number.In order to investigate the effects of basic assumptions in the reionization modeling,we compare the results from islandFAST with those from 21cmFAST for the same assumptions on the ionizing photon sources and sinks,to find how the morphology of the ionization field and the reionization history depend on the different treatments of these two models.Such systematic bias should be noted when interpreting the upcoming observations.
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110support from IUCAA,Pune through the associateship programDST,Government of India for support through a National Post Doctoral Fellowship(N-PDF)。
文摘We study the color and star formation rates of paired galaxies in filaments and sheets using the EAGLE simulations.We find that the major pairs with pair separation<50 kpc are bluer and more star-forming in filamentary environments compared to those hosted in sheet-like environments.This trend reverses beyond a pair separation of~50 kpc.The interacting pairs with larger separations(>50 kpc)in filaments are on average redder and low-star-forming compared to those embedded in sheets.The galaxies in filaments and sheets may have different stellar mass and cold gas mass distributions.Using a KS test,we find that for paired galaxies with pair separation<50 kpc,there are no significant differences in these properties in sheets and filaments.The filaments transport gas toward the cluster of galaxies.Some earlier studies find preferential alignment of galaxy pairs with the filament axis.Such alignment of galaxy pairs may lead to different gas accretion efficiency in galaxies residing in filaments and sheets.We propose that the enhancement of star formation rate at smaller pair separation in filaments is caused by the alignment of galaxy pairs.A recent study with SDSS data reports the same findings.The confirmation of these results by the EAGLE simulations suggests that the hydrodynamical simulations are powerful theoretical tools for studying galaxy formation and evolution in the cosmic web.
基金the support of NSFC-11822305, NSFC-11773031, NSFC-11633004, MOST-2018YFE0120800, MOST-2020SKA0110402, and CAS Interdisciplinary Innovation Teamsupported by the science research grants from the China Manned Space Project with NO.CMSCSST-2021-B01 and CMS-CSST-2021-A01. Z.Y.Z+1 种基金support by the National Natural Science Foundation of China (11773051 and 12022303)the CAS Pioneer Hundred Talents Program。
文摘The China Space Station Telescope(CSST) photometric survey aims to perform a high spatial resolution(~0.″ 15)photometric imaging for the targets that cover a large sky area(~17,500 deg^(2)) and wide wavelength range(from NUV to NIR). It expects to explore the properties of dark matter, dark energy, and other important cosmological and astronomical areas. In this work, we evaluate whether the filter design of the Multi-channel Imager(MCI), one of the five instruments of the CSST, can provide accurate photometric redshift(photoz) measurements with its nine medium-band filters to meet the relevant scientific objectives. We generate the mock data based on the COSMOS photometric redshift catalog with astrophysical and instrumental effects. The application of upper limit information of low signal-to-noise ratio data is adopted in the estimation of photoz. We investigate the dependency of photoz accuracy on the filter parameters, such as band position and width. We find that the current MCI filter design can achieve good photoz measurements with accuracy σ_(z)■ 0.017 and outlier fraction f_(c)■ 2.2%. It can effectively improve the photoz measurements of the main CSST survey using the Survey Camera to an accuracy σ_(z)■ 0.015 and outlier fraction f_(c)■ 1.5%. This indicates that the original MCI filters are proper for the photoz calibration.
基金the support of MOST-2018YFE01208002020SKA0110402+10 种基金NSFC-11822305NSFC-11773031NSFC-11633004CAS Interdisciplinary Innovation Teamsupport from the National Natural Science Foundation of China(NSFC,Grant Nos.11473044 and 11973047)the Chinese Academy of Science grants QYZDJ-SSW-SLH017,XDB 23040100 and XDA15020200support from NSFC grant 11933002the Dawn Program 19SG41the Innovation Program 2019-0107-00-02-E00032 of SMECsupported by the science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01 and CMS-CSST-2021-A01funded by the National Natural Science Foundation of China(NSFC,Grant No.11080922)。
文摘Galaxy photometric redshift(photoz)is crucial in cosmological studies,such as weak gravitational lensing and galaxy angular clustering measurements.In this work,we try to extract photoz information and construct its probability distribution function(PDF)using the Bayesian neural networks from both galaxy flux and image data expected to be obtained by the China Space Station Telescope(CSST).The mock galaxy images are generated from the Hubble Space Telescope-Advanced Camera for Surveys(HST-ACS)and COSMOS catalogs,in which the CSST instrumental effects are carefully considered.In addition,the galaxy flux data are measured from galaxy images using aperture photometry.We construct a Bayesian multilayer perceptron(B-MLP)and Bayesian convolutional neural network(B-CNN)to predict photoz along with the PDFs from fluxes and images,respectively.We combine the B-MLP and B-CNN together,and construct a hybrid network and employ the transfer learning techniques to investigate the improvement of including both flux and image data.For galaxy samples with signal-to-noise ratio(SNR)>10 in g or i band,we find the accuracy and outlier fraction of photoz can achieve σ_(NMAD)=0.022 and η=2.35% for the B-MLP using flux data only,and σ_(NMAD)=0.022 and η=1.32% for the B-CNN using image data only.The Bayesian hybrid network can achieve σ_(NMAD)=0.021 and η=1.23%,and utilizing transfer learning technique can improve results to σ_(NMAD)=0.019 and η=1.17%,which can provide the most confident predictions with the lowest average uncertainty.
基金supported by the National Natural Science Foundation of China (grant Nos. 11922303, 119201003 and 12021003)supported by Hubei province Natural Science Fund for the Distinguished Young Scholars (No.2019CFA052)supported by CAS Project for Young Scientists in Basic Research YSBR-006。
文摘The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes(BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors;hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.
基金supported by NSFC(Grant Nos.11675165,11633001,and 11961131007)in part by the National Key RD Program of China(2021YFC2203100)。
文摘Applying functional differentiation to the density field with Newtonian gravity,we obtain the static,nonlinear equation of the three-point correlation functionζof galaxies to the third order density perturbations.We make the equation closed and perform renormalization of the mass and the Jeans wavenumber.Using the boundary condition inferred from observations,we obtain the third order solutionζ(r,u,θ)at fixed u=2,which is positive,exhibits a Ushape along the angleθ,and decreases monotonously along the radial r up to the range r≤30 h^(-1)Mpc in our computation.The corresponding reduced Q(r,u,θ)deviates from 1 of the Gaussian case,has a deeper U-shape alongθ,and varies non-monotonously along r.The third order solution agrees with the SDSS data of galaxies,quite close to the previous second order solution,especially at large scales.This indicates that the equations of correlation functions with increasing orders of density perturbation provide a stable description of the nonlinear galaxy system.
基金the National Natural Science Foundation of China
文摘The power spectrum of the two-degree Field Galaxy Redshift Survey (2dFGRS) sample is estimated with the discrete wavelet transform (DWT) method. The DWT power spectra within 0.035 〈 k 〈 2.2 h Mpc^-1 are measured for three volume-limited samples defined in consecutive absolute magnitude bins - 19 - - 18, - 20 - - 19 and - 21 - - 20. We show that the DWT power spectrum can effectively distinguish ACDM models of σ8 = 0.84 and σ8 = 0.74. We adopt maximum likelihood method to perform three-parameter fitting of the bias parameter b, pairwise velocity dispersion σpv and redshift distortion parameterβ = Ωm^0.6/b to the measured DWT power spectrum. The fitting results state that in a σ8 = 0.84 universe the best-fit values of Ωm given by the three samples are mutually consistent within the range 0.28 - 0.36, and the best fitted values of Opv are 398-27^+35, 475-29^37 and 550 ± 20 km s^-1 for the three samples, respectively. In the model of σ8 = 0.74, our three samples give very different values of Ωm. We repeated the fitting using the empirical formula of redshift distortion. The result of the model of low σ8 is still poor, especially, one of the best-fit values of σpv is as large as 10^3 km s^-1. We also repeated our fitting by incorporating a scale-dependent galaxy bias. This gave a slightly lower value of Ωm. Differences between the models of σ8 = 0.84 and σ8 = 0.74 still exist in the fitting results. The power spectrum of 2dFGRS seems to disfavor models with low amplitude of density fluctuations if the bias parameter is assumed to be scale independent. For the fitting value of Ωm to be consistent with that given by WMAP3, strong scale dependence of the bias parameters is needed.
基金supported by the National Natural Science Foundation of China(grant Nos.11929301 and 61802428)。
文摘Massive neutrinos are expected to affect the large-scale structure formation,including the major component of solid substances,dark matter halos.How halos are influenced by neutrinos is vital and interesting,and angular momentum(AM)as a significant feature provides a statistical perspective for this issue.Exploring halos from TianNu N-body cosmological simulation with the co-evolving neutrino particles,we obtain some concrete conclusions.First,by comparing the same halos with and without neutrinos,in contrast to the neutrino-free case,over 89.71%of halos have smaller halo moduli,over 71.06%have smaller particle-mass-reduced(PMR)AM moduli,and over 95.44%change their orientations of less than 0°.65.Moreover,the relative variation of PMR modulus is more visible for low-mass halos.Second,to explore the PMR moduli of halos in dense or sparse areas,we divide the whole box into big cubes,and search for halos within a small spherical cell in a single cube.From the two-level divisions,we discover that in denser cubes,the variation of PMR moduli with massive neutrinos decreases more significantly.This distinction suggests that neutrinos exert heavier influence on halos'moduli in compact regions.With massive neutrinos,most halos(86.60%)have lower masses than without neutrinos.
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110IUCAA,Pune for providing support through an associateship program+1 种基金IISER Tirupati for support through a postdoctoral fellowshipFunding for the SDSS and SDSS-Ⅱhas been provided by the Alfred P.Sloan Foundation,the U.S.Department of Energy,the National Aeronautics and Space Administration,the Japanese Monbukagakusho,the Max Planck Society,and the Higher Education Funding Council for England。
文摘Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.
文摘The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analytical fitting. Observational evidence for a cellular universe is briefly reviewed. A simulated Vp(2, 3) map with galaxies lying on the cell boundaries is constructed to compare, as regards general appearance, with the observed CfA map of galaxies and voids, the parameters of the simulation being so chosen as to reproduce the largest observed void size.
基金Y. Zhang is supported by the National Natural Science Foundation of China (Grant Nos. 11421303, 11675165 and 11633001)SRFDP+1 种基金CASthe Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (Grant No. XDB09000000)
文摘The mass density distribution of Newtonian self-gravitating systems is studied analytically in the field theoretical method. Modeling the system as a fluid in hydrostatic equilibrium, we apply Schwinger's functional derivative on the average of the field equation of mass density, and obtain the field equation of 2-point correlation function ξ(r) of the mass density fluctuation, which includes the next order of nonlinearity beyond the Gaussian approximation. The 3-point correlation occurs hierarchically in the equation,and is cut off by the Groth-Peebles ansatz, making it closed. We perform renormalization and write the equation with three nonlinear coefficients. The equation tells us that ξ depends on the point mass m and the Jeans wavelength scale λ_0, which are different for galaxies and clusters. Applying this to large scale structures, it predicts that the profile of ξcc for clusters is similar to ξgg for galaxies but with a higher amplitude, and that the correlation length increases with the mean separation between clusters, i.e., a scaling behavior r_0■0.4 d. The solution yields the galaxy correlation ξ_(gg)(r)■(r_0/r)^(1.7) valid only in a range1 < r < 10 h^(-1) Mpc. At larger scales the solution ξgg deviates below the power law and goes to zero around ~50 h^(-1) Mpc, just as the observations show. We also derive the field equation of the 3-point correlation function in the Gaussian approximation and its analytical solution, for which the Groth-Peebles ansatz with Q = 1 holds.
基金supported by NSFC (No. 11803095)supported by NSFC (No. 11733010)
文摘The alignment between satellite and central galaxies serves as a proxy for addressing the issue of galaxy formation and evolution, and has been investigated abundantly in observations and theoretical works.Most scenarios indicate that the satellites preferentially are located along the major axis of their central galaxy. Recent work shows that the strength of alignment signals depends on the large-scale environment in observations. We use the publicly-released data from EAGLE to figure out whether the same effect can be found in the associated hydrodynamic simulation. We found much stronger environmental dependency of alignment signals in the simulation. We also explore change of alignments to address the formation of this effect.
基金supported by the National Natural Science Foundation of China under the Distinguished Young Scholar Grant 10525314the Key Project Grant 10533010,by the ChineseAcademy of Sciences under grant KJCX3-SYW-N2by the Ministry of Science and Technologynational basic science Program (Project 973) under grant No. 2007CB815401
文摘The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale structure distribution of galaxies and quasars, which could be used for constraining it. We study the detection limits of PNG from the surveys of the LAMOST telescope. The cases of the main galaxy survey, the luminous red galaxy (LRG) survey, and the quasar survey of dif- ferent magnitude limits are considered. We find that the Mainl sample (i.e. the main galaxy survey which is one magnitude deeper than the SDSS main galaxy survey, or r 〈 18.8) could only provide a very weak constraint on PNG. For the Main2 sample (r 〈 19.8) and the LRG survey, the 2or (95.5%) limits on the PNG parameter fNL are | fNL|〈 145 and | fNL| 〈 114 respectively, which are comparable to the current limit from cosmic microwave background (CMB) data. The quasar survey could provide a much more stringent constraint, and we find that the 2a limit for |fNL| is between 50 and 103, depending on the magnitude limit of the survey. With Planck-like priors on cosmological parameters, the quasar survey with g 〈 21.65 would improve the constraint to I fNLI 〈 43 (2or). We also discuss the possibility of further tightening the constraint by using the relative bias method proposed by Seljak.
基金supported by NSFC Grant Nos.11675165,11633001 and 11961131007in part by the National Key RD Program of China(2021YFC2203100)。
文摘Based on the field theory of density fiuctuation under Newtonian gravity,we obtain analytically the nonlinear equation of 3-pt correlation functionζof galaxies in a homogeneous,isotropic,static universe.The density fiuctuation has been kept up to second order.By the Fry-Peebles ansatz and the Groth-Peebles ansatz,the equation ofζbecomes closed and differs from the Gaussian approximate equation.Using the boundary condition inferred from the data of SDSS,we obtain the solutionζ(r,u,θ)at fixed u=2,which exhibits a shallow U-shape along the angleθand,nevertheless,decreases monotonously along the radial r.We show its difference with the Gaussian solution.As a direct criterion of non-Gaussianity,the reduced Q(r,u,θ)deviates from the Gaussianity plane Q=1,exhibits a deeper U-shape alongθand varies weakly along r,agreeing with the observed data.
基金supported by the project“Understanding Dark Universe Using Large Scale Structure of the Universe”,funded by the Ministry of Science。
文摘The line-of-sight peculiar velocities are good indicators of the gravitational fluctuation of the density field.Techniques have been developed to extract cosmological information from the peculiar velocities in order to test cosmological models.These techniques include measuring cosmic flow,measuring two-point correlation and power spectrum of the peculiar velocity fields,and reconstructing the density field using peculiar velocities.However,some measurements from these techniques are biased due to the nonGaussianity of the estimated peculiar velocities.Therefore,we rely on the 2MTF survey to explore a power transform that can Gaussianize the estimated peculiar velocities.We find a tight linear relation between the transformation parameters and the measurement errors of log-distance ratio.To show an example for the implementation of Gaussianized peculiar velocities in cosmology,we develop a bulk flow estimator and estimate bulk flow from the Gaussianized peculiar velocities.We use 2MTF mocks to test the algorithm,and we find the algorithm yields unbiased measurements.We also find this technique gives smaller measurement errors compared to other techniques.In Galactic coordinates,at the depth of 30 h^(-1)Mpc,we measure a bulk flow of 332±27 km s^(-1) in the direction(l,b)=(293°±5°,13°±4°).The measurement is consistent with theΛCDM prediction.