期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Porous high entropy(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: A novel strategy towards making ultrahigh temperature ceramics thermal insulating 被引量:19
1
作者 Heng Chen Huimin Xiang +2 位作者 Fu-Zhi Dai Jiachen Liu Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第10期2404-2408,共5页
Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity a... Transition metal diborides based ultrahigh temperature ceramics(UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy(HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s^-1 and 0.51 W m^-1K^-1, respectively. In addition, it exhibits high compressive strength of3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2 is a novel strategy in making UHTCs thermal insulating. 展开更多
关键词 High entropy ceramics (zr0.2hf0.2ti0.2nb0.2ta0.2)b2 Transition metal diborides Porous materials Thermal insulating In-situ reaction/partial sintering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部