Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition...Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of- 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.展开更多
Gene duplications provide evolutionary potentials for generating novel functions, while polyploidization or whole genome duplication (WGD) doubles the chromosomes initially and results in hundreds to thousands of re...Gene duplications provide evolutionary potentials for generating novel functions, while polyploidization or whole genome duplication (WGD) doubles the chromosomes initially and results in hundreds to thousands of retained duplicates. WGDs are strongly supported by evidence commonly found in many species-rich lineages of eukaryotes, and thus are considered as a major driving force in species diversification. We per- formed comparative genomic and phylogenomic analyses of 59 public genomes/transcriptomes and 46 newly sequenced transcriptomes covering major lineages of angiosperms to detect large-scale gene dupli- cation events by surveying tens of thousands of gene family trees. These analyses confirmed most of the previously reported WGDs and provided strong evidence for novel ones in many lineages. The detected WGDs supported a model of exponential gene loss during evolution with an estimated half-life of approx- imately 21.6 million years, and were correlated with both the emergence of lineages with high degrees of diversification and periods of global climate changes. The new datasets and analyses detected many novel WGDs widely spread during angiosperm evolution, uncovered preferential retention of gene functions in essential cellular metabolisms, and provided clues for the roles of WGD in promoting angiosperm radiation and enhancing their adaptation to environmental changes.展开更多
Grey relational analysis is an important part of the grey systems theory, and it is the basis of the grey clustering analysis, grey decision-making and grey controlling. To research whether grey relational models sati...Grey relational analysis is an important part of the grey systems theory, and it is the basis of the grey clustering analysis, grey decision-making and grey controlling. To research whether grey relational models satisfy the four grey relational theorems, several kinds of grey relational models are commented. Some problems including the properties of normality, pair symmetry and wholeness are discussed. The phenomenon that the lower value of almost each grey relational model is not equal to zero is proved. The contradiction problems between the properties of wholeness and pair symmetry are verified. Finally, several propositions are constructed to explain the above problems.展开更多
Realizing sustainable development has become a global priority.This holds,in particular,for agriculture.Recently,the United Nations launched the Sustainable Development Goals(SDGs),and the Nineteenth National People’...Realizing sustainable development has become a global priority.This holds,in particular,for agriculture.Recently,the United Nations launched the Sustainable Development Goals(SDGs),and the Nineteenth National People’s Congress has delivered a national strategy for sustainable development in China—realizing green development.The overall objective of Agriculture Green Development(AGD)is to coordinate"green"with"development"to realize the transformation of current agriculture with high resource consumption and high environmental costs into a green agriculture and countryside with high productivity,high resource use efficiency and low environmental impact.This is a formidable task,requiring joint efforts of government,farmers,industry,educators and researchers.The innovative concept for AGD will focus on reconstructing the whole crop-animal production and food production-consumption system,with the emphasis on high thresholds for environmental standards and food quality as well as enhanced human well-being.This paper addresses the significance,challenges,framework,pathways and potential solutions for realizing AGD in China,and highlights the potential changes that will lead to a more sustainable agriculture in the future.Proposals include interdisciplinary innovations,whole food chain improvement and regional solutions.The implementation of AGD in China will provide important implications for the countries in developmental transition,and contribute to global sustainable development.展开更多
A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrum...A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.展开更多
Liver cancer ranks sixth in cancer incidence, and is the third leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, which arises from hepatocytes an...Liver cancer ranks sixth in cancer incidence, and is the third leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, which arises from hepatocytes and accounts for approximately 70%-85% of cases. Hepatitis B virus (HBV) frequently causes liver inflammation, hepatic damage and subsequent cirrhosis. Integrated viral DNA is found in 85%-90% of HBV-related HCCs. Its presence in tumors from non-cirrhotic livers of children or young adults further supports the role of viral DNA integration in hepatocarcinogenesis. Integration of subgenomic HBV DNA fragments into different locations within the host DNA is a significant feature of chronic HBV infection. Integration has two potential consequences: (1) the host genome becomes altered (“cis” effect); and (2) the HBV genome becomes altered (“trans” effect). The cis effect includes insertional mutagenesis, which can potentially disrupt host gene function or alter host gene regulation. Tumor progression is frequently associated with rearrangement and partial gain or loss of both viral and host sequences. However, the role of integrated HBV DNA in hepatocarcinogenesis remains controversial. Modern technology has provided a new paradigm to further our understanding of disease mechanisms. This review summarizes the role of HBV DNA integration in human carcinogenesis.展开更多
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some...The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with la展开更多
Deciphering the genetic mechanisms underlying agronomic traits is of great importance for crop improvement. Most of these traits are controlled by multiple quantitative trait loci (QTLs), and identifying the underlyin...Deciphering the genetic mechanisms underlying agronomic traits is of great importance for crop improvement. Most of these traits are controlled by multiple quantitative trait loci (QTLs), and identifying the underlying genes by conventional QTL fine-mapping is time-consuming and labor-intensive. Here, we devised a new method, named quantitative trait gene sequencing (QTG-seq), to accelerate QTL fine-mapping. QTGseq combines QTL partitioning to convert a quantitative trait into a near-qualitative trait, sequencing of bulked segregant pools from a large segregating population, and the use of a robust new algorithm for identifying candidate genes. Using QTG-seq, we fine-mapped a plant-height QTL in maize (Zea mays L.), qPH7, to a 300-kb genomic interval and verified that a gene encoding an NF-YC transcription factor was the functional gene. Functional analysis suggested that qPH7-encoding protein might influence plant height by interacting with a CO-like protein and an AP2 domain-containing protein. Selection footprint ana卜 ysis indicated that qPH7 was subject to strong selection during maize improvement. In summary, QTG-seq provides an efficient method for QTL fine-mapping in the era of “big data".展开更多
Type 2 diabetes is a complicated metabolic disorder with both short- and long-term undesirable complications. In recent years, there has been growing evidence that functional foods and their bioactive compounds, due t...Type 2 diabetes is a complicated metabolic disorder with both short- and long-term undesirable complications. In recent years, there has been growing evidence that functional foods and their bioactive compounds, due to their biological properties, may be used as complementary treatment for type 2 diabetes mellitus. In this review, we have highlighted various functional foods as missing part of medical nutrition therapy in diabetic patients. Several in vitro, animal models and some human studies, have demonstrated that functional foods and nutraceuticals may improve postprandial hyperglycemia and adipose tissue metabolism modulatecarbohydrate and lipid metabolism. Functional foods may also improve dyslipidemia and insulin resistance, and attenuate oxidative stress and inflammatory processes and subsequently could prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy and retinopathy. In conclusion available data indicate that a functional foods-based diet may be a novel and comprehensive dietary approach for management of type 2 diabetes.展开更多
Helicobacter pylori(H.pylori)infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers,mucosa associated tissue lymphoma and gastric ...Helicobacter pylori(H.pylori)infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers,mucosa associated tissue lymphoma and gastric adenocarcinoma.In recent years,an alarming increase in antimicrobial resistance and subsequently failing empiric H.pylori eradication therapies have been noted worldwide,also in many European countries.Therefore,rapid and accurate determination of H.pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important.Traditionally,detection of H.pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time.Recent advances in diagnostics provide new tools,like real-time polymerase chain reaction(PCR)and line probe assays,to diagnose H.pylori infection and antimicrobial resistance to certain antibiotics,directly from clinical specimens.Moreover,high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome,thereby allowing identification of resistance mutations and associated antibiotic resistance.In the first part of this review,we will give an overview on currently available diagnostic methods for detection of H.pylori and its drug resistance and their implementation in H.pylori management.The second part of the review focusses on the use of next generation sequencing technology in H.pylori research.To this end,we conducted a literature search for original research articles in English using the terms“Helicobacter”,“transcriptomic”,“transcriptome”,“next generation sequencing”and“whole genome sequencing”.This review is aimed to bridge the gap between current diagnostic practice(histology,rapid urease test,H.pylori culture,PCR and line probe assays)and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H.pylori man展开更多
AIM: To clarify the innervation of human gallbladder,with special reference to morphological understanding of gallstone formation after gastrectomy.METHODS: The liver, gallbladder and surrounding structures were imm...AIM: To clarify the innervation of human gallbladder,with special reference to morphological understanding of gallstone formation after gastrectomy.METHODS: The liver, gallbladder and surrounding structures were immersed in a 10 mg/L solution of alizarin red S in ethanol to stain the peripheral nerves in cadavers (n = 10). Innervation in the areas was completely dissected under a binocular microscope. Similarly,innervation in the same areas of 10 Suncus murinus (S. murinus) was examined employing whole mount immunohistochemistry.RESULTS: Innervation of the gallbladder occurred predominantly through two routes. One was from the anterior hepatic plexus, the innervation occurred along the cystic arteries and duct. Invariably this route passed through the hepatoduodenal ligament. The other route was from the posterior hepatic plexus, the innervation occurred along the cystic duct ventrally. This route also passed through the hepatoduodenal ligament dorsally.Similar results were obtained in S. murinus.CONCLUSION: The route from the anterior hepatic plexus via the cystic artery and/or duct is crucial for preserving gallbladder innervation. Lymph node dissection specifically in the hepatoduodenal ligament may affect the incidence of gallstones after gastrectomy.Furthermore, the route from the posterior hepatic plexus via the common bile duct and the cystic duct to the gallbladder should not be disregarded. Preservation of the plexus may attenuate the incidence of gallstone formation after gastrectomy.展开更多
文摘Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of- 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.
文摘Gene duplications provide evolutionary potentials for generating novel functions, while polyploidization or whole genome duplication (WGD) doubles the chromosomes initially and results in hundreds to thousands of retained duplicates. WGDs are strongly supported by evidence commonly found in many species-rich lineages of eukaryotes, and thus are considered as a major driving force in species diversification. We per- formed comparative genomic and phylogenomic analyses of 59 public genomes/transcriptomes and 46 newly sequenced transcriptomes covering major lineages of angiosperms to detect large-scale gene dupli- cation events by surveying tens of thousands of gene family trees. These analyses confirmed most of the previously reported WGDs and provided strong evidence for novel ones in many lineages. The detected WGDs supported a model of exponential gene loss during evolution with an estimated half-life of approx- imately 21.6 million years, and were correlated with both the emergence of lineages with high degrees of diversification and periods of global climate changes. The new datasets and analyses detected many novel WGDs widely spread during angiosperm evolution, uncovered preferential retention of gene functions in essential cellular metabolisms, and provided clues for the roles of WGD in promoting angiosperm radiation and enhancing their adaptation to environmental changes.
基金supported partly by the National Natural Science Foundation of China (70701017) the Philosophy and Social Sciences Foundation of Nanjing University of Astronautics and Aeronautics (V0865-091).
文摘Grey relational analysis is an important part of the grey systems theory, and it is the basis of the grey clustering analysis, grey decision-making and grey controlling. To research whether grey relational models satisfy the four grey relational theorems, several kinds of grey relational models are commented. Some problems including the properties of normality, pair symmetry and wholeness are discussed. The phenomenon that the lower value of almost each grey relational model is not equal to zero is proved. The contradiction problems between the properties of wholeness and pair symmetry are verified. Finally, several propositions are constructed to explain the above problems.
基金supported by the Project of Beijing’s Top-Precision-Advanced Disciplinesthe CSC-AGD Ph D Program from China Scholarship Council(CSC)the Key Consulting Project of the Chinese Academy of Engineering。
文摘Realizing sustainable development has become a global priority.This holds,in particular,for agriculture.Recently,the United Nations launched the Sustainable Development Goals(SDGs),and the Nineteenth National People’s Congress has delivered a national strategy for sustainable development in China—realizing green development.The overall objective of Agriculture Green Development(AGD)is to coordinate"green"with"development"to realize the transformation of current agriculture with high resource consumption and high environmental costs into a green agriculture and countryside with high productivity,high resource use efficiency and low environmental impact.This is a formidable task,requiring joint efforts of government,farmers,industry,educators and researchers.The innovative concept for AGD will focus on reconstructing the whole crop-animal production and food production-consumption system,with the emphasis on high thresholds for environmental standards and food quality as well as enhanced human well-being.This paper addresses the significance,challenges,framework,pathways and potential solutions for realizing AGD in China,and highlights the potential changes that will lead to a more sustainable agriculture in the future.Proposals include interdisciplinary innovations,whole food chain improvement and regional solutions.The implementation of AGD in China will provide important implications for the countries in developmental transition,and contribute to global sustainable development.
基金This project is supported by National Natural Science Foundation of China(No.50135050).
文摘A new concept called intelligent virtual control (IVC), which can be drivenby measuring functions, is put forward. This small 'intelligent measurement instrument unit (IMIU)',carrying with functions of instrument, consists of different types of intelligent virtualinstrument (IVI) through individual components together as building blocks and can be displayeddirectly on the computer screen. This is a new concept of measuring instrument, and also animportant breakthrough after virtual instrument (VI). Virtual control makes instrument resourcesobtain further exploitation. It brings about a fundamental change to the design and manufacturingmode. The instrument therefore, can not only be produced directly inside a PC, but the product isinvolved in the 'green product' system. So far, all the present digital instruments will grow to bereplaced by intelligent control with green characteristics.
文摘Liver cancer ranks sixth in cancer incidence, and is the third leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, which arises from hepatocytes and accounts for approximately 70%-85% of cases. Hepatitis B virus (HBV) frequently causes liver inflammation, hepatic damage and subsequent cirrhosis. Integrated viral DNA is found in 85%-90% of HBV-related HCCs. Its presence in tumors from non-cirrhotic livers of children or young adults further supports the role of viral DNA integration in hepatocarcinogenesis. Integration of subgenomic HBV DNA fragments into different locations within the host DNA is a significant feature of chronic HBV infection. Integration has two potential consequences: (1) the host genome becomes altered (“cis” effect); and (2) the HBV genome becomes altered (“trans” effect). The cis effect includes insertional mutagenesis, which can potentially disrupt host gene function or alter host gene regulation. Tumor progression is frequently associated with rearrangement and partial gain or loss of both viral and host sequences. However, the role of integrated HBV DNA in hepatocarcinogenesis remains controversial. Modern technology has provided a new paradigm to further our understanding of disease mechanisms. This review summarizes the role of HBV DNA integration in human carcinogenesis.
基金This work was supported by the major science and technology projects of CNPC during the“14th five-year plan”(Grant number 2021DJ0101)。
文摘The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with la
基金the National Key Research and Development Program of China (2016YFD0100404)the National Basic Research Program of China (2014CB138200)+4 种基金the National Natural Science Foundation of China (91735305,1571268)the Fundamental Research Funds of the Central Non-profit Scientific Institution (Y2018LM04)the Xinjiang Key R&D Program (2018B01006-3)and the Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (2662016PY096014RC020).This research was also partly supported by the open funds of the National Key Laboratory of Crop Genetic Improvement.
文摘Deciphering the genetic mechanisms underlying agronomic traits is of great importance for crop improvement. Most of these traits are controlled by multiple quantitative trait loci (QTLs), and identifying the underlying genes by conventional QTL fine-mapping is time-consuming and labor-intensive. Here, we devised a new method, named quantitative trait gene sequencing (QTG-seq), to accelerate QTL fine-mapping. QTGseq combines QTL partitioning to convert a quantitative trait into a near-qualitative trait, sequencing of bulked segregant pools from a large segregating population, and the use of a robust new algorithm for identifying candidate genes. Using QTG-seq, we fine-mapped a plant-height QTL in maize (Zea mays L.), qPH7, to a 300-kb genomic interval and verified that a gene encoding an NF-YC transcription factor was the functional gene. Functional analysis suggested that qPH7-encoding protein might influence plant height by interacting with a CO-like protein and an AP2 domain-containing protein. Selection footprint ana卜 ysis indicated that qPH7 was subject to strong selection during maize improvement. In summary, QTG-seq provides an efficient method for QTL fine-mapping in the era of “big data".
基金Supported by Research Institute of Endocrine Sciences,Shahid Beheshti University of Medical Sciences,Tehran,Iran
文摘Type 2 diabetes is a complicated metabolic disorder with both short- and long-term undesirable complications. In recent years, there has been growing evidence that functional foods and their bioactive compounds, due to their biological properties, may be used as complementary treatment for type 2 diabetes mellitus. In this review, we have highlighted various functional foods as missing part of medical nutrition therapy in diabetic patients. Several in vitro, animal models and some human studies, have demonstrated that functional foods and nutraceuticals may improve postprandial hyperglycemia and adipose tissue metabolism modulatecarbohydrate and lipid metabolism. Functional foods may also improve dyslipidemia and insulin resistance, and attenuate oxidative stress and inflammatory processes and subsequently could prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy and retinopathy. In conclusion available data indicate that a functional foods-based diet may be a novel and comprehensive dietary approach for management of type 2 diabetes.
文摘Helicobacter pylori(H.pylori)infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers,mucosa associated tissue lymphoma and gastric adenocarcinoma.In recent years,an alarming increase in antimicrobial resistance and subsequently failing empiric H.pylori eradication therapies have been noted worldwide,also in many European countries.Therefore,rapid and accurate determination of H.pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important.Traditionally,detection of H.pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time.Recent advances in diagnostics provide new tools,like real-time polymerase chain reaction(PCR)and line probe assays,to diagnose H.pylori infection and antimicrobial resistance to certain antibiotics,directly from clinical specimens.Moreover,high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome,thereby allowing identification of resistance mutations and associated antibiotic resistance.In the first part of this review,we will give an overview on currently available diagnostic methods for detection of H.pylori and its drug resistance and their implementation in H.pylori management.The second part of the review focusses on the use of next generation sequencing technology in H.pylori research.To this end,we conducted a literature search for original research articles in English using the terms“Helicobacter”,“transcriptomic”,“transcriptome”,“next generation sequencing”and“whole genome sequencing”.This review is aimed to bridge the gap between current diagnostic practice(histology,rapid urease test,H.pylori culture,PCR and line probe assays)and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H.pylori man
基金Supported by Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant No. 16590139
文摘AIM: To clarify the innervation of human gallbladder,with special reference to morphological understanding of gallstone formation after gastrectomy.METHODS: The liver, gallbladder and surrounding structures were immersed in a 10 mg/L solution of alizarin red S in ethanol to stain the peripheral nerves in cadavers (n = 10). Innervation in the areas was completely dissected under a binocular microscope. Similarly,innervation in the same areas of 10 Suncus murinus (S. murinus) was examined employing whole mount immunohistochemistry.RESULTS: Innervation of the gallbladder occurred predominantly through two routes. One was from the anterior hepatic plexus, the innervation occurred along the cystic arteries and duct. Invariably this route passed through the hepatoduodenal ligament. The other route was from the posterior hepatic plexus, the innervation occurred along the cystic duct ventrally. This route also passed through the hepatoduodenal ligament dorsally.Similar results were obtained in S. murinus.CONCLUSION: The route from the anterior hepatic plexus via the cystic artery and/or duct is crucial for preserving gallbladder innervation. Lymph node dissection specifically in the hepatoduodenal ligament may affect the incidence of gallstones after gastrectomy.Furthermore, the route from the posterior hepatic plexus via the common bile duct and the cystic duct to the gallbladder should not be disregarded. Preservation of the plexus may attenuate the incidence of gallstone formation after gastrectomy.