期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Weighted Teaching-Learning-Based Optimization for Global Function Optimization 被引量:9
1
作者 Suresh Chandra Satapathy Anima Naik K. Parvathi 《Applied Mathematics》 2013年第3期429-439,共11页
Teaching-Learning-Based Optimization (TLBO) is recently being used as a new, reliable, accurate and robust optimization technique scheme for global optimization over continuous spaces [1]. This paper presents an, impr... Teaching-Learning-Based Optimization (TLBO) is recently being used as a new, reliable, accurate and robust optimization technique scheme for global optimization over continuous spaces [1]. This paper presents an, improved version of TLBO algorithm, called the Weighted Teaching-Learning-Based Optimization (WTLBO). This algorithm uses a parameter in TLBO algorithm to increase convergence rate. Performance comparisons of the proposed method are provided against the original TLBO and some other very popular and powerful evolutionary algorithms. The weighted TLBO (WTLBO) algorithm on several benchmark optimization problems shows a marked improvement in performance over the traditional TLBO and other algorithms as well. 展开更多
关键词 Function OPTIMIZATION tlbo EVOLUTIONARY COMPUTATION
下载PDF
基于混沌分组教与学优化算法锅炉NO_x模型优化研究 被引量:10
2
作者 马云鹏 牛培峰 +2 位作者 陈科 闫姗姗 李国强 《计量学报》 CSCD 北大核心 2018年第1期125-129,共5页
为了平衡教与学优化算法的全局和局部搜索能力,提出一种混沌分组教与学优化算法。采用3种调整机制:应用混沌方法初始化种群个体;在教阶段成绩更新中引入自适应惯性权值;在学阶段,采用随机蛙跳算法思想,将班级中的学生分组,更新子种群的... 为了平衡教与学优化算法的全局和局部搜索能力,提出一种混沌分组教与学优化算法。采用3种调整机制:应用混沌方法初始化种群个体;在教阶段成绩更新中引入自适应惯性权值;在学阶段,采用随机蛙跳算法思想,将班级中的学生分组,更新子种群的最差解。用10个经典的测试集函数测试改进算法的性能,并与人工蜂群算法、万有引力算法、原始的教学优化算法进行比较,结果显示:改进算法具有良好的全局和局部搜索能力,而且收敛精度高。此外,应用改进的教与学算法优化循环流化床锅炉氮氧化合物排放浓度的模型,仿真试验表明优化后的模型具有良好的辨识能力和泛化能力,能够指导工程,解决实际问题。 展开更多
关键词 计量学 氮氧化合物 教与学优化算法 混沌 自适应 随机蛙跳算法 循环流化床锅炉
下载PDF
基于TLBO-LOIRE的回采工作面瓦斯涌出量预测 被引量:7
3
作者 胡坤 王素珍 +1 位作者 韩盛 王爽 《应用基础与工程科学学报》 EI CSCD 北大核心 2017年第5期1048-1056,共9页
瓦斯涌出量是瓦斯防治与管理、矿井通风系统设计的重要基础数据,准确地预测瓦斯涌出量对于煤矿安全生产有着极其重要的指导意义与应用价值.但工作面瓦斯涌出规律复杂,在检测、数据采集过程中不可避免地会混入异常噪声,直接影响着瓦斯预... 瓦斯涌出量是瓦斯防治与管理、矿井通风系统设计的重要基础数据,准确地预测瓦斯涌出量对于煤矿安全生产有着极其重要的指导意义与应用价值.但工作面瓦斯涌出规律复杂,在检测、数据采集过程中不可避免地会混入异常噪声,直接影响着瓦斯预测的准确性.本文采用l1正则化异常值隔离与回归方法(LOIRE)对煤矿回采工作面瓦斯涌出量及其相关影响因素的统计样本数据库进行计算分析,隔离样本的异常噪声干扰,利用教与学算法(TLBO)优化回归参数,建立了回采工作面瓦斯涌出量的优化预测模型,并对煤矿现场数据进行分析预测,结果表明3个回采工作面的瓦斯涌出量预测误差分别为3.04%、0.33%和2.36%,平均相对误差仅为2.36%.TLBO-LOIRE优化预测方法,预测准确性高,能够满足井下瓦斯防治的工程需要,对其它工程领域的数据预测同样适用. 展开更多
关键词 瓦斯涌出量 预测 tlbo LOIRE 参数优化
原文传递
广域电力系统稳定器参数的两阶段协调优化方法 被引量:9
4
作者 王鹏达 陈玉蛟 +3 位作者 周斌 黎灿兵 杨斌 曹相阳 《电力系统保护与控制》 EI CSCD 北大核心 2018年第18期25-32,共8页
广域电力系统稳定器(Wide Area Power System Stabilizer,WAPSS)对电力系统的区间低频振荡能够起到良好的阻尼作用。同时,WAPSS参数的协调优化设计能够避免因增大某一振荡模式的阻尼而造成其他模式阻尼恶化的问题,提出一种两阶段设计的W... 广域电力系统稳定器(Wide Area Power System Stabilizer,WAPSS)对电力系统的区间低频振荡能够起到良好的阻尼作用。同时,WAPSS参数的协调优化设计能够避免因增大某一振荡模式的阻尼而造成其他模式阻尼恶化的问题,提出一种两阶段设计的WAPSS参数协调优化方法。第一阶段基于留数相位补偿原理设计WAPSS超前滞后环节的参数。第二阶段,将整定后的超前滞后环节参数代入WAPSS传递函数以减少决策变量,再以提高低频振荡模式和近虚轴模式的阻尼为多优化目标,利用基于精英替换策略的改进教与学算法(Teaching-Learning-Based Optimization,TLBO)对WAPSS的增益参数进行优化。通过将超前滞后环节参数和增益参数两阶段协调优化,不仅减少了每次迭代计算时间,而且达到了提高电力系统阻尼的目的。最后通过两区四机的仿真算例验证了该方法的有效性。 展开更多
关键词 低频振荡 广域电力系统稳定器 改进的教与学算法 留数
下载PDF
基于改进TLBO算法的刮板输送机伸缩机尾PID控制系统优化 被引量:5
5
作者 胡坤 张长建 +1 位作者 王爽 韩盛 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第1期106-111,共6页
为了提高刮板输送机伸缩机尾控制系统的工作性能,将一种新的群智能优化算法,即教学与学习算法(TLBO)应用于机尾PID控制器的参数优化中,并提出新的自适应教学因子计算方法,其利用完整学习阶段前、后学生群体成绩的变化来决定教学因子的... 为了提高刮板输送机伸缩机尾控制系统的工作性能,将一种新的群智能优化算法,即教学与学习算法(TLBO)应用于机尾PID控制器的参数优化中,并提出新的自适应教学因子计算方法,其利用完整学习阶段前、后学生群体成绩的变化来决定教学因子的取值。研究结果表明:改进后的TLBO算法的精度及稳定性均比原TLBO算法的优。在建立刮板输送机伸缩机尾控制系统模型的基础上,利用改进的TLBO方法进行PID参数整定,并引入超调量控制指标对适应度函数再次完善,二次优化后的刮板输送机伸缩机尾控制系统具有良好控制品质和鲁棒性。 展开更多
关键词 刮板输送机 伸缩机尾 tlbo 教学因子 PID参数优化
下载PDF
Robust frequency control in a renewable penetrated power system: an adaptive fractional order-fuzzy approach 被引量:7
6
作者 Anil Annamraju Srikanth Nandiraju 《Protection and Control of Modern Power Systems》 2019年第1期193-207,共15页
Purpose Load frequency control(LFC)in today’s modern power system is getting complex,due to intermittency in the output power of renewable energy sources along with substantial changes in the system parameters and lo... Purpose Load frequency control(LFC)in today’s modern power system is getting complex,due to intermittency in the output power of renewable energy sources along with substantial changes in the system parameters and loads.To address this problem,this paper proposes an adaptive fractional order(FO)-fuzzy-PID controller for LFC of a renewable penetrated power system.Design/methodology/approach To examine the performance of the proposed adaptive FO-fuzzy-PID controller,four different types of controllers that includes optimal proportional-integral-derivative(PID)controller,optimal fractional order(FO)-PID controller,optimal fuzzy PID controller,optimal FO-fuzzy PID controller are compared with the proposed approach.The dynamic response of the system relies upon the parameters of these controllers,which are optimized by using teaching-learning based optimization(TLBO)algorithm.The simulations are carried out using MATLAB/SIMULINK software.Findings The simulation outcomes reveal the supremacy of the proposed approach in dynamic performance improvement(in terms of settling time,overshoot and error reduction)over other controllers in the literature under different scenarios.Originality/value In this paper,an adaptive FO-fuzzy-PID controller is proposed for LFC of a renewable penetrated power system.The main contribution of this work is,a maiden application has been made to tune all the possible parameters of fuzzy controller and FO-PID controller simultaneously to handle the uncertainties caused by renewable sources,load and parametric variations. 展开更多
关键词 Adaptive fractional order-fuzzy-PID controller Renewable energy sources Load frequency control tlbo algorithm
原文传递
基于增强教与学优化算法的图像分割
7
作者 李理 周湘贞 《贵阳学院学报(自然科学版)》 2024年第2期105-109,共5页
为提高分割图像的质量和提高计算效率,提出了一种基于增强教与学优化算法(ETLBO)的图像分割方法。所提ETLBO利用逆向学习技术,提高全局搜索速度和优化准确度,改进全局寻优性能,并保留了经典课程教与学优化算法计算成本低、稳定性高的优... 为提高分割图像的质量和提高计算效率,提出了一种基于增强教与学优化算法(ETLBO)的图像分割方法。所提ETLBO利用逆向学习技术,提高全局搜索速度和优化准确度,改进全局寻优性能,并保留了经典课程教与学优化算法计算成本低、稳定性高的优点。此外,采用最小交叉熵(MCE)的概念,将图像分割的多级阈值化问题转换为优化问题,利用ETLBO得到多级最优阈值组合,实现分割图像和原始图像之间的交叉熵最小化,提高分割图像的视觉质量。实验结果表明,所提方法在分割图像的均匀性和适应度方面的性能优于其他先进方法,且计算效率更高。 展开更多
关键词 图像分割 多级阈值化 最小交叉熵 教与学优化 逆向学习技术
下载PDF
Automatic Clustering Using Teaching Learning Based Optimization 被引量:3
8
作者 M. Ramakrishna Murty Anima Naik +3 位作者 J. V. R. Murthy P. V. G. D. Prasad Reddy Suresh C. Satapathy K. Parvathi 《Applied Mathematics》 2014年第8期1202-1211,共10页
Finding the optimal number of clusters has remained to be a challenging problem in data mining research community. Several approaches have been suggested which include evolutionary computation techniques like genetic ... Finding the optimal number of clusters has remained to be a challenging problem in data mining research community. Several approaches have been suggested which include evolutionary computation techniques like genetic algorithm, particle swarm optimization, differential evolution etc. for addressing this issue. Many variants of the hybridization of these approaches also have been tried by researchers. However, the number of optimal clusters and the computational efficiency has still remained open for further research. In this paper, a new optimization technique known as “Teaching-Learning-Based Optimization” (TLBO) is implemented for automatic clustering of large unlabeled data sets. In contrast to most of the existing clustering techniques, the proposed algorithm requires no prior knowledge of the data to be classified rather it determines the optimal number of partitions of the data “on the run”. The new AUTO-TLBO algorithms are evaluated on benchmark datasets (collected from UCI machine repository) and performance comparisons are made with some well-known clustering algorithms. Results show that AUTO-TLBO clustering techniques have much potential in terms of comparative results and time of computations. 展开更多
关键词 CLUSTERING Auto-Clustering tlbo
下载PDF
Medical Data Clustering and Classification Using TLBO and Machine Learning Algorithms 被引量:1
9
作者 Ashutosh Kumar Dubey Umesh Gupta Sonal Jain 《Computers, Materials & Continua》 SCIE EI 2022年第3期4523-4543,共21页
This study aims to empirically analyze teaching-learning-based optimization(TLBO)and machine learning algorithms using k-means and fuzzy c-means(FCM)algorithms for their individual performance evaluation in terms of c... This study aims to empirically analyze teaching-learning-based optimization(TLBO)and machine learning algorithms using k-means and fuzzy c-means(FCM)algorithms for their individual performance evaluation in terms of clustering and classification.In the first phase,the clustering(k-means and FCM)algorithms were employed independently and the clustering accuracy was evaluated using different computationalmeasures.During the second phase,the non-clustered data obtained from the first phase were preprocessed with TLBO.TLBO was performed using k-means(TLBO-KM)and FCM(TLBO-FCM)(TLBO-KM/FCM)algorithms.The objective function was determined by considering both minimization and maximization criteria.Non-clustered data obtained from the first phase were further utilized and fed as input for threshold optimization.Five benchmark datasets were considered from theUniversity of California,Irvine(UCI)Machine Learning Repository for comparative study and experimentation.These are breast cancer Wisconsin(BCW),Pima Indians Diabetes,Heart-Statlog,Hepatitis,and Cleveland Heart Disease datasets.The combined average accuracy obtained collectively is approximately 99.4%in case of TLBO-KM and 98.6%in case of TLBOFCM.This approach is also capable of finding the dominating attributes.The findings indicate that TLBO-KM/FCM,considering different computational measures,perform well on the non-clustered data where k-means and FCM,if employed independently,fail to provide significant results.Evaluating different feature sets,the TLBO-KM/FCM and SVM(GS)clearly outperformed all other classifiers in terms of sensitivity,specificity and accuracy.TLBOKM/FCM attained the highest average sensitivity(98.7%),highest average specificity(98.4%)and highest average accuracy(99.4%)for 10-fold cross validation with different test data. 展开更多
关键词 K-MEANS FCM tlbo tlbo-KM tlbo-FCM tlbo-KM/FCM machine learning algorithms
下载PDF
基于多小组协同学习教学算法的车间作业调度问题 被引量:4
10
作者 张梅 杨晟轩 朱金辉 《控制与决策》 EI CSCD 北大核心 2018年第8期1354-1362,共9页
为求解车间作业调度问题(JSSP),提出一种新颖的多小组协同学习的教学算法,实现小组间学习的协同及基于学习能力的深度和广度搜索策略.针对JSSP问题因其复杂度较高容易导致算法陷入局部最优的不足,引入学习小组协同学习,通过组内学习和... 为求解车间作业调度问题(JSSP),提出一种新颖的多小组协同学习的教学算法,实现小组间学习的协同及基于学习能力的深度和广度搜索策略.针对JSSP问题因其复杂度较高容易导致算法陷入局部最优的不足,引入学习小组协同学习,通过组内学习和组内交流,使学习过程跳出当前的局限.为了兼顾局部和全局搜索能力,引入基于学习能力的深度和广度搜索策略,小组内学生按照学习能力强弱进行学习,较优的学生进行深度的学习,较差的学生进行广度的学习.最后,对OR-Library中的标准仿真实例进行实验,结果表明,所提出的教学算法在JSSP问题上的收敛精度和搜索能力较其他算法均得到了有效的提高. 展开更多
关键词 小组学习 教学优化算法 协同进化 车间作业调度
原文传递
基于教与学优化算法的相关反馈图像检索 被引量:4
11
作者 毕晓君 潘铁文 《电子学报》 EI CAS CSCD 北大核心 2017年第7期1668-1676,共9页
为提高基于内容的图像检索的检索性能和检索速度,克服低层视觉特征与高层语义概念间的"语义鸿沟",提出一种基于教与学优化的图像检索相关反馈算法(TLBO-RF).结合图像检索问题的特殊性和粒子群优化算法的优点,对TLBO算法中个... 为提高基于内容的图像检索的检索性能和检索速度,克服低层视觉特征与高层语义概念间的"语义鸿沟",提出一种基于教与学优化的图像检索相关反馈算法(TLBO-RF).结合图像检索问题的特殊性和粒子群优化算法的优点,对TLBO算法中个体的更新机制进行了改进,通过将相关图像集的中心作为教师以及引入学员最好学习状态Pbest,使之朝用户感兴趣的相关图像区域快速收敛.将该算法与目前效果最好的两种基于进化算法的相关反馈技术在两套标准图像测试集上进行对比,结果表明本文算法相较于另外两种算法具有明显的优势,不仅提高了图像检索性能,同时也加快了图像检索速度,更好地满足了用户的检索要求. 展开更多
关键词 基于内容的图像检索 相关反馈 教与学优化算法 粒子群优化算法
下载PDF
混合流水车间调度问题的IPSO算法 被引量:3
12
作者 李解 任魏翔 秦永彬 《计算机与数字工程》 2016年第6期985-991,共7页
混合流水车间调度问题又称柔性流水车间调度问题,广泛存在于现代工业之中。它是对传统流水车间的扩展。其中,每道工序可能有多台机器负责处理。针对混合流水车间调度问题,论文以最小化最大完成时间为目标建立整数规划模型,将经典粒子群... 混合流水车间调度问题又称柔性流水车间调度问题,广泛存在于现代工业之中。它是对传统流水车间的扩展。其中,每道工序可能有多台机器负责处理。针对混合流水车间调度问题,论文以最小化最大完成时间为目标建立整数规划模型,将经典粒子群优化算法进行改进,并同教与学算法(Teaching-Learning Based Optimation,TLBO)相结合,提出了一种用于解决该问题的改进的粒子群算法(Improved Particle Swam Optical Algorithm,IPSO)。算法在产生初始种群的过程中,首先将原问题转化为一系列置换流水车间调度问题,并求得其解。之后,将得到的解作为初始种群的一部分。由于现有的粒子群算法具有易收敛于局部最优解的缺点。因此为防止算法收敛于局部最优解,引入变异操作。此外,在粒子群优化算法的基础上引入适用于求解混合流水车间的TLBO算法的老师阶段和学生阶段。设计正交试验对算法参数设置进行分析,并确定了较优的参数组合。通过基于算例的仿真实验,并与现有的解决混合流水车间调度问题的算法进行比较,验证所提出IPSO算法是有效的。 展开更多
关键词 流水车间调度 粒子群算法 tlbo IPSO 最大完成时间
下载PDF
Parameter Optimization of Amalgamated Al2O3-40% TiO2 Atmospheric Plasma Spray Coating on SS304 Substrate Using TLBO Algorithm
13
作者 Thankam Sreekumar Rajesh Ravipudi Venkata Rao 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第3期89-105,共17页
SS304 is a commercial grade stainless steel which is used for various engineering applications like shafts, guides, jigs, fixtures, etc. Ceramic coating of the wear areas of such parts is a regular practice which sign... SS304 is a commercial grade stainless steel which is used for various engineering applications like shafts, guides, jigs, fixtures, etc. Ceramic coating of the wear areas of such parts is a regular practice which significantly enhances the Mean Time Between Failure (MTBF). The final coating quality depends mainly on the coating thickness, surface roughness and hardness which ultimately decides the life. This paper presents an experimental study to effectively optimize the Atmospheric Plasma Spray (APS) process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO2 ceramic coatings to get the best quality of coating on commercial SS304 substrate. The experiments are conducted with a three-level L<sub>18</sub> Orthogonal Array (OA) Design of Experiments (DoE). Critical input parameters considered are: spray nozzle distance, substrate rotating speed, current of the arc, carrier gas flow and coating powder flow rate. The surface roughness, coating thickness and hardness are considered as the output parameters. Mathematical models are generated using regression analysis for individual output parameters. The Analytic Hierarchy Process (AHP) method is applied to generate weights for the individual objective functions and a combined objective function is generated. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is applied to the combined objective function to optimize the values of input parameters to get the best output parameters and confirmation tests are conducted based on that. The significant effects of spray parameters on surface roughness, coating thickness and coating hardness are studied in detail. 展开更多
关键词 Atmospheric Plasma Spray (APS) Coating SS304 Steel Teaching Learning Based Optimization (tlbo) Design of Experiments (DoE) Analytic Hierarchy Process (AHP) Al2O2-40% TiO3
下载PDF
An Experimental Investigation into the Amalgamated Al2O3-40% TiO2 Atmospheric Plasma Spray Coating Process on EN24 Substrate and Parameter Optimization Using TLBO
14
作者 Thankam Sreekumar Rajesh Ravipudi Venkata Rao 《Journal of Materials Science and Chemical Engineering》 2016年第6期51-65,共15页
Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a co... Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters 展开更多
关键词 Atmospheric Plasma Spray (APS) EN24 Design of Experiments (DOE) Teaching Learning Based Optimization (tlbo) Analytic Hierarchy Process (AHP) Al2O3-40% TiO2
下载PDF
An Efficient Hybrid TLBO-PSO Approach for Congestion Management Employing Real Power Generation Rescheduling
15
作者 Muneeb Ul Bashir Ward Ul Hijaz Paul +2 位作者 Mubassir Ahmad Danish Ali Md. Safdar Ali 《Smart Grid and Renewable Energy》 2021年第8期113-135,共23页
<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Tr... <span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Transmission line congestion trigger serious problems for smooth functioning in restructured power system causing an increase in the cost of transmission hence affecting market efficiency. Thus, it is of utmost importance for the investigation of various techniques in order to relieve congestion in the transmission network. Generation rescheduling is one of the most efficacious techniques to do away with the problem of congestion. For optimiz</span><span style="font-family:Verdana;">ing the congestion cost, this work suggests a hybrid optimization based on</span><span style="font-family:Verdana;"> two effective algorithms viz Teaching learning-based optimization (TLBO) algorithm and Particle swarm optimization (PSO) algorithm. For binding the constraints, the traditional penalty function technique is incorporated. Modified IEEE 30-bus test system and modified IEEE 57-bus test system are used to inspect the usefulness of the suggested methodology.</span> 展开更多
关键词 Congestion Management DEREGULATION Optimal Power Flow Teaching-Learning-Based Optimization (tlbo) Power System Modeling
下载PDF
5G MEC系统融合粒子群和教学算法的卸载策略优化 被引量:1
16
作者 韩松岳 郭基联 《无线电工程》 北大核心 2022年第10期1864-1878,共15页
计算卸载是移动边缘计算(Mobile Edge Computing,MEC)的关键技术和功能实现的核心环节。为了改善5G智慧教室入网设备多、流量高并发引起时延与能耗增加的问题,进行了理论研究、场景构建和需求分析,并建立了系统和通信模型,提出了能耗约... 计算卸载是移动边缘计算(Mobile Edge Computing,MEC)的关键技术和功能实现的核心环节。为了改善5G智慧教室入网设备多、流量高并发引起时延与能耗增加的问题,进行了理论研究、场景构建和需求分析,并建立了系统和通信模型,提出了能耗约束下时延最优化问题;将教学算法和粒子群算法融合,提出了一种融合教学机制的自适应粒子群(Teach&Learn Adaptive Particle Swarm Optimization,TLAPSO)算法,并仿真验证了其性能提升和复杂度控制;进行了仿真对比实验,得出结论:5G架构下部署MEC系统能实现降时延、省带宽和高隔离等目标,基于TLAPSO的卸载策略优于基于模拟退火算法、粒子群算法和本地卸载的策略,在任务量和能耗容忍度实验中,分别优化提升了55.90%和54.02%。 展开更多
关键词 5G 移动边缘计算 智慧教室 教与学优化 粒子群优化 任务卸载优化
下载PDF
Switching angle optimization and fault analysis of a multistring-multilevel inverter for renewable-energy-source applications
17
作者 Savitha M S.Nagaraja Rao 《Clean Energy》 EI 2022年第6期907-930,共24页
In this paper,a multistring-multilevel inverter(M-MLI)for renewable-energy-source applications has been proposed with reduced switch count and harmonics along with single-switch fault analysis for various levels.It re... In this paper,a multistring-multilevel inverter(M-MLI)for renewable-energy-source applications has been proposed with reduced switch count and harmonics along with single-switch fault analysis for various levels.It requires only‘m+1’power switches for‘m’voltage levels.The proposed work achieves the fine-tuning of switching angles using a metaheuristic technique,i.e.the teaching-learning-based optimization algorithm(TLBOA),to mitigate the total harmonic distortion(THD)of the M-MLI.Furthermore,the proposed TLBOA has been compared with conventional modulation techniques such as equal phase(EP),half-equal phase(HEP),near-level control(NLC)and Newton-Raphson(NR)to verify the effectiveness of TLBOA for various voltage levels in terms of%voltage-THD(%V-THD),computational time and methodology.By fine-tuning the switching angles,the%V-THD is improved significantly when compared with EP,HEP,NLC and NR modulation techniques.For an 11-level single-phase M-MLI,the%V-THD using TLBOA at 0.91 modulation index(MI)is 5.051%.The lower-order harmonics,i.e.5,7,11 and 13,are eliminated to improve the power quality.Furthermore,MLIs are often prone to failure,resulting in waveform distortion.The extreme reduction in power quality impacts the load and significant damage is likely.The location of the open-circuit fault to be identified becomes more tedious under the faulty conditions with increased switch counts and voltage levels since the mathematical modelling fails to address the scenario in less computational time.Hence,the machine-learning approach,i.e.support vector machine(SVM)with Bayesian optimization,has been discussed to locate the faulty switch.Finally,the proposed M-MLI configuration has been modelled,simulated and validated using MATLAB®and Simulink®.The results of the M-MLI configuration have been verified for 7,9 and 11 levels using TLBOA along with fault analysis using the SVM approach. 展开更多
关键词 tlbo fault resilience multistring-multilevel inverters renewable-energy applications
原文传递
Segmentation of Brain Tumor Magnetic Resonance Images Using a Teaching-Learning Optimization Algorithm 被引量:1
18
作者 J.Jayanthi M.Kavitha +4 位作者 T.Jayasankar A.Sagai Francis Britto N.B.Prakash Mohamed Yacin Sikkandar C.Bharathiraja 《Computers, Materials & Continua》 SCIE EI 2021年第9期4191-4203,共13页
Image recognition is considered to be the pre-eminent paradigm for the automatic detection of tumor diseases in this era.Among various cancers identified so far,glioma,a type of brain tumor,is one of the deadliest can... Image recognition is considered to be the pre-eminent paradigm for the automatic detection of tumor diseases in this era.Among various cancers identified so far,glioma,a type of brain tumor,is one of the deadliest cancers,and it remains challenging to the medicinal world.The only consoling factor is that the survival rate of the patient is increased by remarkable percentage with the early diagnosis of the disease.Early diagnosis is attempted to be accomplished with the changes observed in the images of suspected parts of the brain captured in specific interval of time.From the captured image,the affected part of the brain is analyzed using magnetic resonance imaging(MRI)technique.Existence of different modalities in the captured MRI image demands the best automated model for the easy identification of malignant cells.Number of image processing techniques are available for processing the images to identify the affected area.This study concentrates and proposes to improve early diagnosis of glioma using a preprocessing boosted teaching and learning optimization(P-BTLBO)algorithm that automatically segments a brain tumor in an given MRI image.Preprocessing involves contrast enhancement and skull stripping procedures through contrast limited adaptive histogram equalization technique.The traditional TLBO algorithm that works with the perspective of teacher and the student is here improved by using a boosting mechanism.The results obtained using this P-BTLBO algorithm is compared on different benchmark images for the validation of its standard.The experimental findings show that P-BTLBO algorithm approach outperforms other existing algorithms of its kind. 展开更多
关键词 Brain tumor tlbo algorithm skull stripping PREPROCESSING segmentation
下载PDF
TLBO-ELM模型的番茄灰霉病高光谱潜育期诊断
19
作者 张燕 吴华瑞 朱华吉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第9期2969-2975,共7页
番茄叶片在感染病害后首先发生的是内在生理反应,肉眼无法观察到。叶片从被感染到出现肉眼可见病斑期间,称为叶片病害潜育期。为了实现番茄叶片表面未见明显病斑的灰霉病潜育期诊断,对接种样本进行叶片编码、跟踪、采集所有编码叶片样本... 番茄叶片在感染病害后首先发生的是内在生理反应,肉眼无法观察到。叶片从被感染到出现肉眼可见病斑期间,称为叶片病害潜育期。为了实现番茄叶片表面未见明显病斑的灰霉病潜育期诊断,对接种样本进行叶片编码、跟踪、采集所有编码叶片样本1~8 d连续高光谱图像数据,建立番茄叶片样本时序高光谱数据集。采用跟踪的叶片样本出现肉眼可见病斑前几天同一位置区域的高光谱数据作为潜育期感兴趣区域进行检测分析。为了建立番茄叶片灰霉病潜育期诊断和不同病斑等级分类模型,采用基于教学优化算法(TLBO)优化极限学习机(ELM)的分类模型进行建模。通过TLBO算法优化ELM的输入权值和隐藏层的偏差,提高模型分类性能。利用高光谱成像系统在近红外高光谱波段388~1006 nm波段获取五个等级的感兴趣区域进行数据建模,共采样213个高光谱数据,其中,健康类(56个)、潜育期类(42个)、小病斑类(43个)、大病斑类(39个)和严重类(33个)。通过对比不同的光谱预处理方法,采用效果最好的小波滤波变换(DWT)对样本数据中每类数据分别滤波。DWT滤波后,在610~840 nm波段间五个等级光谱曲线能区分明显,共包含91个波长,波长数量较多。因此,采用竞争性自适应重加权抽样法(CARS)对采用DWT预处理后的光谱数据在610~840 nm波段重复3次优选特征波长,合并去除重复项后得到9个特征波段:694,696,765,767,769,772,778,838和840 nm。最后分别选取全波段FC、610~840 nm波段、CARS提取的9个特征波段建立3个分类模型FC-TLBO-ELM,DWT-TLBO-ELM,DWT-CARS-TLBO-ELM进行对比,其中DWT-CARS-TLBO-ELM检测精确度最高达100%,潜育期召回率100%,利用时间最短为0.0689 s,表明该模型可以实现番茄灰霉病潜育期高精度诊断和灰霉病病害程度高精度分类,为番茄灰霉病早期防治、精准施药提供理论依据。 展开更多
关键词 时序高光谱数据 灰霉病程度分类 潜育期诊断 极限学习机 教学优化算法
下载PDF
基于小班级并行教学的教与学优化算法研究 被引量:1
20
作者 杨闰 茅继晨 《软件导刊》 2018年第10期93-96,共4页
针对教与学优化算法后期收敛速度慢,易陷入局部最优的缺陷,提出了一种小班级并行教学的教与学优化算法。该算法将学生分成两个班级,一个班级在教学阶段之前加入学生预习阶段,以提高算法的开发能力。另一个班级引入Metropolis准则,提高... 针对教与学优化算法后期收敛速度慢,易陷入局部最优的缺陷,提出了一种小班级并行教学的教与学优化算法。该算法将学生分成两个班级,一个班级在教学阶段之前加入学生预习阶段,以提高算法的开发能力。另一个班级引入Metropolis准则,提高算法搜索能力。选择两个班级中成绩较好的学生组成一个临时班级,并选出其中优秀学生按一定比例替换两个小班级中成绩较差学生继续寻优。每次迭代后,临时班级中的学生根据成绩好坏更新一次,直到满足条件跳出循环。在测试函数上进行仿真实验,验证了该算法的有效性。 展开更多
关键词 教与学优化算法 小班级并行教学 开发能力 搜索能力
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部