The goal of this brief partly review paper is to summarize the results of the works published over the last few years regarding the origin of the out-of-plane distortions (puckering) of heterocyclic compounds. In all ...The goal of this brief partly review paper is to summarize the results of the works published over the last few years regarding the origin of the out-of-plane distortions (puckering) of heterocyclic compounds. In all the papers devoted to this problem, it is shown that the instability of planar configurations of heterocyclic molecules leading to symmetry breaking and distortions is induced by the pseudo Jahn-Teller effect (PJTE). Special attention in this work is paid to the mechanism of suppression and enhancement of the PJTE distortions of heterocycles by oxidation, reduction, and chemical substitutions. It is demonstrated that oxidation of 1,4-dithiine containing compounds leads to suppression of the PJTE and to restoration of their planar nuclear configurations. An example of a dibenzo[1,2]dithiine molecule is used to demonstrate the mechanism of enhancement of the PJTE by reduction. It is shown that the reduction of the neutral C12H8S2 molecule up to the dianion (C12H8S2)2- enhances the PJTE, followed by the S-S bond cleavage and significant structural distortions of the system. The change of the PJTE by chemical substitutions, accompanied either by puckering or by planarization of heterocyclic compounds, is discussed using as examples 1,4-ditinine and its S-oxygenated derivatives.展开更多
文摘The goal of this brief partly review paper is to summarize the results of the works published over the last few years regarding the origin of the out-of-plane distortions (puckering) of heterocyclic compounds. In all the papers devoted to this problem, it is shown that the instability of planar configurations of heterocyclic molecules leading to symmetry breaking and distortions is induced by the pseudo Jahn-Teller effect (PJTE). Special attention in this work is paid to the mechanism of suppression and enhancement of the PJTE distortions of heterocycles by oxidation, reduction, and chemical substitutions. It is demonstrated that oxidation of 1,4-dithiine containing compounds leads to suppression of the PJTE and to restoration of their planar nuclear configurations. An example of a dibenzo[1,2]dithiine molecule is used to demonstrate the mechanism of enhancement of the PJTE by reduction. It is shown that the reduction of the neutral C12H8S2 molecule up to the dianion (C12H8S2)2- enhances the PJTE, followed by the S-S bond cleavage and significant structural distortions of the system. The change of the PJTE by chemical substitutions, accompanied either by puckering or by planarization of heterocyclic compounds, is discussed using as examples 1,4-ditinine and its S-oxygenated derivatives.