期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Modelling and Theoretical Analysis of Laminar Flow and Heat Transfer in Various Protruding-Edged Plate Systems
1
作者 Abdul Rahim A. Khaled 《Journal of Electronics Cooling and Thermal Control》 2015年第3期45-65,共21页
Laminar flow and heat transfer in different protruding-edged plate systems are modelled and analyzed in the present work. These include the Parallel Flow (PF) and the Counter Flow (CF) protruding-edgedplate exchangers... Laminar flow and heat transfer in different protruding-edged plate systems are modelled and analyzed in the present work. These include the Parallel Flow (PF) and the Counter Flow (CF) protruding-edgedplate exchangers as well as those systems being subjected to Constant Wall Temperature (CWT) and Uniform Heat Flux (UHF) conditions. These systems are subjected to normal free stream having both power-law velocity profile and same average velocity. The continuity, momentum and energy equations are transformed to either similarity or nonsimilar equations and then solved by using well validated finite difference methods. Accurate correlations for various flow and heat transfer parameters are obtained. It is found that there are specific power-law indices that maximize the heat transfer in both PF and CF systems. The maximum reported enhancement ratios are 1.075 and 1.109 for the PF and CF systems, respectively, at Pr = 100. These ratios are 1.076 and 1.023 for CWT and UHF conditions, respectively, at Pr = 128. Per same friction force, the CF system is preferable over the PF system only when the power-law indices are smaller than zero. Finally, this work demonstrates that by appropriately distributing the free stream velocity, the heat transfer from a plate can be increased up to 10% fold. 展开更多
关键词 Heat Transfer PROTRUSION (non-)similarity solution STAGNATION Flow nonUNIFORM Free Stream Regression
下载PDF
Natural Convection Flow and Heat Transfer Enhancement of a Nanofluid past a Truncated Cone with Magnetic Field Effect
2
作者 Sameh E. Ahmed A. Mahdy 《World Journal of Mechanics》 2012年第5期272-279,共8页
A nonsimilarity analysis is performed to investigate the laminar, free convection boundary layer flow over a permeable isothermal truncated cone in the presence of a transverse magnetic field effect. A suitable set of... A nonsimilarity analysis is performed to investigate the laminar, free convection boundary layer flow over a permeable isothermal truncated cone in the presence of a transverse magnetic field effect. A suitable set of dimensionless variables is used and non-similar equations governing the problem are obtained. Fourth order Runge-Kutta with shooting technique is employed for the numerical solution of the obtained equations. Different water-based nanofluids containing Cu, Ag, CuO, Al2O3, and TiO2 are taken into consideration. The effects of pertinent parameters such as the solid volume fraction of nanoparticles, and magnetic field parameter have been investigated. Furthermore, different models of nanofluid based on different formulas for thermal conductivity and dynamic viscosity on the flow and heat transfer characteristics are discussed. Various comparisons with previously published work for the case of a vertical plate are performed and the results are found to be in excellent agreement. 展开更多
关键词 NANOFLUID TRUNCATED CONE Magnetic Field Natural CONVECTION non-similarity solution
下载PDF
Modeling natural convection boundary layer flow of micropolar nanofluid over vertical permeable cone with variable wall temperature 被引量:3
3
作者 S.E.AHMED 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第8期1171-1180,共10页
This paper discusses the natural convection boundary layer flow of a micropo- lax nanofluid over a vertical permeable cone with variable wall temperatures. Non-similax solutions are obtained. The nonlineaxly coupled d... This paper discusses the natural convection boundary layer flow of a micropo- lax nanofluid over a vertical permeable cone with variable wall temperatures. Non-similax solutions are obtained. The nonlineaxly coupled differential equations under the boundary layer approximations governing the flow axe solved numerically using an efficient, itera- tive, tri-diagonal, implicit finite difference method. Different experimental correlations for both nanofluid effective viscosity and nanofluid thermal conductivity are considered. It is found that as the vortex-viscosity parameter increases, both the velocity profiles and the local Nusselt number decrease. Also, among all the nanoparticles considered in this investigation, Cu gives a good convection. 展开更多
关键词 micropolar nanofluid non-similar solution CONE finite difference method non-uniform heating
下载PDF
Unsteady Mixed Convection Flow along Symmetric Wedge with Variable Surface Temperature Embedded in a Porous Medium Saturated with a Nanofluid 被引量:1
4
作者 K. M. Abualnaja M. S. Elgendy F. S. Ibrahim 《Journal of Applied Mathematics and Physics》 2021年第1期101-126,共26页
Laminar two-dimensional unsteady mixed-convection boundary-layer flow of a viscous incompressible fluid past asymmetric wedge with variable surface temperature embedded in a porous medium saturated with a nanofluid ha... Laminar two-dimensional unsteady mixed-convection boundary-layer flow of a viscous incompressible fluid past asymmetric wedge with variable surface temperature embedded in a porous medium saturated with a nanofluid has been studied. The employed mathematical model for the nanofluid takes into account the effects of Brownian motion and thermophoresis. The velocity in the potential flow is assumed to vary arbitrary with time. The non-Darcy effects including convective, boundary and inertial effects will be included in the analysis. The unsteadiness is due to the time-dependent free stream velocity. The governing boundary layer equations along with the boundary conditions are converted into dimensionless form by a non-similar transformation, and then resulting system of coupled non-linear partial differential equations are solved by perturbation solutions for small dimensionless time until the second order. Numerical solutions of the governing equations are obtained employing the implicit finite-difference scheme in combination with the quasi-linearization technique. To validating the method used, we compared our results with previous results in earlier papers on special cases of the problem and are found to be in agreement. Effects of various parameters on velocity, temperature and nanoparticle volume fraction profiles are graphically presented. 展开更多
关键词 Nanofluids Unsteady Flow Mixed Convection Boundary Layer Wedge Flow Finite Difference non-similarity solutions Porous Media
下载PDF
Unsteady mixed convection flow over stretching sheet in presence of chemical reaction and heat generation or absorption with non-uniform slot suction or injection
5
作者 R.RAVINDRAN N.SAMYUKTHA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第10期1253-1272,共20页
The article examines the unsteady mixed convection flow over a vertical stretching sheet in the presence of chemical reaction and heat generation or absorption with non-uniform mass transfer. The unsteadiness is cause... The article examines the unsteady mixed convection flow over a vertical stretching sheet in the presence of chemical reaction and heat generation or absorption with non-uniform mass transfer. The unsteadiness is caused by the time dependent free stream velocity varying arbitrarily with time. Non-similar solutions are obtained nu- merically by solving the coupled nonlinear partial differential equations using the quasi- linearization technique in combination with an implicit finite difference scheme. To reveal the tendency of the solutions, typical results for the local skin friction coefficient and the local Nusselt and Sherwood numbers are presented for different values of parameters. The effects of various parameters on the velocity, temperature, and concentration distributions are discussed here. The present numerical results are compared with the previously published work, and the results are found to be in excellent agreement. 展开更多
关键词 unsteady mixed convection non-similar solution non-uniform slot suction stretching sheet chemical reaction heat generation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部