A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive c...A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.展开更多
A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anoma...A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropie wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.展开更多
The interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO) and its relationship with the climate jump in the Northern Hemisphere in the 1960s, are discussed using the data an...The interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO) and its relationship with the climate jump in the Northern Hemisphere in the 1960s, are discussed using the data analyses. It is clearly shown that the amplitudes of the NAO and NPO were all increased obviously in the 1960s and the main period of the展开更多
The authors present evidence to suggest that variations in the snow depth over the Tibetan Plateau (TP) are connected with changes of North Atlantic Oscillation (NAO) in winter (JFM). During the positive phase o...The authors present evidence to suggest that variations in the snow depth over the Tibetan Plateau (TP) are connected with changes of North Atlantic Oscillation (NAO) in winter (JFM). During the positive phase of NAO, the Asian subtropical westerly jet intensifies and the India-Myanmar trough deepens. Both of these processes enhance ascending motion over the TP. The intensified upward motion, together with strengthened southerlies upstream of the India-Myanmar trough, favors stronger snowfall over the TP, which is associated with East Asian tropospheric cooling in the subsequent late spring (April-May). Hence, the decadal increase of winter snow depth over the TP after the late 1970s is proposed to be an indicator of the connection between the enhanced winter NAO and late spring tropospheric cooling over East Asia.展开更多
The capabilities of two versions of the Global–Ocean–Atmosphere–Land–System model (i.e. GOALS–2 and GOALS–4) developed at State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), are v...The capabilities of two versions of the Global–Ocean–Atmosphere–Land–System model (i.e. GOALS–2 and GOALS–4) developed at State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), are validated in terms of the simulations of the winter North Atlantic Oscillation (NAO), which is currently the subject of considerable scientific interest. The results show that both GOALS–2 and GOALS–4 exhibit a realistic NAO signal associated with relatively reasonable spatial patterns of sea level pressure, surface air temperature, and precipitation. Generally speaking, the associated patterns of precipitation in GOALSs match better with the observation in comparison with the case of surface temperature. For the imprint of NAO on the ocean, or perhaps a coupling between the two fluids, the associated tripole patterns of the North Atlantic SST anomaly are presented distinctly in GOALS–2, for GOALS-4 however, this is not the case. Spatially, the models’ main deficiencies appear to be that the simulated Icelandic lows shift northward apparently, which in turn result in the blemish of GOALSs in reproducing the accompanied surface wind anomalies. For the interannual and even longer time scale variations of DJF sea level pressure (SLP) over the North Atlantic region, GOALSs reproduce the center with the strongest variability rationally, but the intensities are far weaker than the observation. Key words North Atlantic Oscillation (NAO) - Model evaluation - GOALS model This study was jointly supported by the National key Project (Grant No. 96-908-02-03), the Excel-lent National Key Laboratory Research Project (Grant NO. 49823002), Chinese Academy of Sciences (CAS) under grant “ Bai Ren Ji Hua” for “ Validation of Coupled Climate Models”, and IAP innova-tion fund (No.8-1204).The authors gratefully acknowledge Dv. Jin Xuingze, Mr. Liu Xiying in IAP /LASG, and Dr. Gong Daoyi in Geophysical Department of Peking University for providing ardent help.展开更多
This article discusses the interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO), its relationship with the interdecadal climate variation in China which is associated with ...This article discusses the interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO), its relationship with the interdecadal climate variation in China which is associated with the climate jump in the Northern Hemisphere in the 1960’s, using the data analyses. It is clearly shown that both the amplitudes of the NAO and NPO increase obviously in the 1960’s and the main period of the oscillations changes from 3-4 years before the 1960’s to 8–15 years after the 1960’s. Therefore, interdecadal climate variation in China or the climate jump in the 1960’s is closely related to the anomalies of the NAO and NPO. Key words North Atlantic Oscillation (NAO) - North Pacific Oscillation (NPO) - Climate Jump - Interdecadal climate variation This work was supported by National Key Basic Science Program in China (G1998040903), Chinese Academy of Science and the National Natural Science Fundation of China (Grant No.49823002).The authors are also grateful to Ms. Wang Xuan for typing the manuscript.展开更多
The herbal medicine Tong Luo Jiu Nao (TLJN) contains geniposide (GP) and ginsenoside Rgl at a molar ratio of i0:1. Rgl is the major component of another herbal medicine, panax notoginseng saponin (PNS). TLJN ha...The herbal medicine Tong Luo Jiu Nao (TLJN) contains geniposide (GP) and ginsenoside Rgl at a molar ratio of i0:1. Rgl is the major component of another herbal medicine, panax notoginseng saponin (PNS). TLJN has been shown to strengthen brain function in humans, and in animals it improves learning and memory. We have previously shown that TLJN reduces amyloi- dogenic processing in Alzheimer's disease (AD) mouse models. Together this suggests TLJN may be a potential treatment for patients with dementia. Because chronic damage of the central nervous system by formaldehyde (FA) has been presented as a risk factor for age-associated cognitive dysfunction, in the present study we investigated the protective effect of both TLJN and GP in neuron-like cells exposed to FA. FA-exposed murine N2a neuroblastoma cells were incubated with TLJN, its main in- gredient GP, as well as PNS, to measure cell viability and morphology, the rate of apoptosis and expression of genes encoding Akt, FOXO3, Bcl2 and p53. The CCK-8 assay, cytoskeletal staining and flow cytometry were used to test cell viability, mor- phology and apoptosis, respectively. Fluorescent quantitative real-time PCR (qRT-PCR) was used to monitor changes in gene expression, and HPLC to determine the rate of FA clearance. Treatment of N2a cells with 0.09 mmol L-1 FA for 24 h signifi- cantly reduced cell viability, changed cell morphology and promoted apoptosis. Both TLJN and GP conferred neuroprotection to FA-treated N2a cells, whereas PNS, which had to be used at lower concentrations because of its toxicity, did not. Our data demonstrate that TLJN can rescue neuronal damage caused by FA and that its main ingredient, GP, has a major role in this ef- ficacy. This presents purified GP as a drug or lead compound for the treatment of AD.展开更多
The relationship between the North Atlantic Oscillation(NAO) and the tropical cyclone frequency over the western North Pacific(WNPTCF) in summer is investigated by use of observation data. It is found that their linka...The relationship between the North Atlantic Oscillation(NAO) and the tropical cyclone frequency over the western North Pacific(WNPTCF) in summer is investigated by use of observation data. It is found that their linkage appears to have an interdecadal change from weak connection to strong connection. During the period of 1948–1977, the NAO was insignificantly correlated to the WNPTCF. However, during the period of 1980–2009, they were significantly correlated with stronger(weaker) NAO corresponding to more(fewer) tropical cyclones in the western North Pacific. The possible reason for such a different relationship between the NAO and the WNPTCF during the former and latter periods is further analyzed from the perspective of large-scale atmospheric circulations. When the NAO was stronger than normal in the latter period, an anomalous cyclonic circulation prevailed in the lower troposphere of the western North Pacific and the monsoon trough was intensified, concurrent with the eastward-shifting western Pacific subtropical high as well as anomalous low-level convergence and high-level divergence over the western North Pacific. These conditions favor the genesis and development of tropical cyclones, and thus more tropical cyclones appeared over the western North Pacific. In contrast, in the former period, the impact of the NAO on the aforementioned atmospheric circulations became insignificant, thereby weakening its linkage to the WNPTCF. Further study shows that the change of the wave activity flux associated with the NAO during the former and latter periods may account for such an interdecadal shift of the NAO–WNPTCF relationship.展开更多
基金supported jointly by the NOAA Arctic Research,CAS Project ZKCX2-SW-210the National Natural Science Foundation of China(Grant No.40275025)
文摘A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.
基金jointly supported by the National Basic Research Program of China (Grant Nos. 2010CB950404, 2013CB430203, 2010CB950501 and 2012CB955901)the National Natural Science Foundation of China (Grant No. 41205058)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2012M510634)the National Science and Technology Support Program of China (Grant No. 2009BAC51B05)
文摘A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropie wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.
文摘The interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO) and its relationship with the climate jump in the Northern Hemisphere in the 1960s, are discussed using the data analyses. It is clearly shown that the amplitudes of the NAO and NPO were all increased obviously in the 1960s and the main period of the
基金supported by the R&D Special Fund for Public Welfare Industry (meteorology) under Grant Nos. GYHY200706010 and GYHY200806020 the National Science Foundation of China under Grant Nos. 40625014 and 40821092 National Key Project of Scientific and Technical Supporting Programs under Grant Nos. 2007BAC03A01 and 2007BAC29B03
文摘The authors present evidence to suggest that variations in the snow depth over the Tibetan Plateau (TP) are connected with changes of North Atlantic Oscillation (NAO) in winter (JFM). During the positive phase of NAO, the Asian subtropical westerly jet intensifies and the India-Myanmar trough deepens. Both of these processes enhance ascending motion over the TP. The intensified upward motion, together with strengthened southerlies upstream of the India-Myanmar trough, favors stronger snowfall over the TP, which is associated with East Asian tropospheric cooling in the subsequent late spring (April-May). Hence, the decadal increase of winter snow depth over the TP after the late 1970s is proposed to be an indicator of the connection between the enhanced winter NAO and late spring tropospheric cooling over East Asia.
基金This study was jointly supported by the National key Project !(Grant No. 96-908-02-03) the Excellent National Key Laboratory
文摘The capabilities of two versions of the Global–Ocean–Atmosphere–Land–System model (i.e. GOALS–2 and GOALS–4) developed at State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), are validated in terms of the simulations of the winter North Atlantic Oscillation (NAO), which is currently the subject of considerable scientific interest. The results show that both GOALS–2 and GOALS–4 exhibit a realistic NAO signal associated with relatively reasonable spatial patterns of sea level pressure, surface air temperature, and precipitation. Generally speaking, the associated patterns of precipitation in GOALSs match better with the observation in comparison with the case of surface temperature. For the imprint of NAO on the ocean, or perhaps a coupling between the two fluids, the associated tripole patterns of the North Atlantic SST anomaly are presented distinctly in GOALS–2, for GOALS-4 however, this is not the case. Spatially, the models’ main deficiencies appear to be that the simulated Icelandic lows shift northward apparently, which in turn result in the blemish of GOALSs in reproducing the accompanied surface wind anomalies. For the interannual and even longer time scale variations of DJF sea level pressure (SLP) over the North Atlantic region, GOALSs reproduce the center with the strongest variability rationally, but the intensities are far weaker than the observation. Key words North Atlantic Oscillation (NAO) - Model evaluation - GOALS model This study was jointly supported by the National key Project (Grant No. 96-908-02-03), the Excel-lent National Key Laboratory Research Project (Grant NO. 49823002), Chinese Academy of Sciences (CAS) under grant “ Bai Ren Ji Hua” for “ Validation of Coupled Climate Models”, and IAP innova-tion fund (No.8-1204).The authors gratefully acknowledge Dv. Jin Xuingze, Mr. Liu Xiying in IAP /LASG, and Dr. Gong Daoyi in Geophysical Department of Peking University for providing ardent help.
基金This work was supported by National Key Basic Science Program in China !(G 1998040903)Chinese Academy of Science and the Nat
文摘This article discusses the interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO), its relationship with the interdecadal climate variation in China which is associated with the climate jump in the Northern Hemisphere in the 1960’s, using the data analyses. It is clearly shown that both the amplitudes of the NAO and NPO increase obviously in the 1960’s and the main period of the oscillations changes from 3-4 years before the 1960’s to 8–15 years after the 1960’s. Therefore, interdecadal climate variation in China or the climate jump in the 1960’s is closely related to the anomalies of the NAO and NPO. Key words North Atlantic Oscillation (NAO) - North Pacific Oscillation (NPO) - Climate Jump - Interdecadal climate variation This work was supported by National Key Basic Science Program in China (G1998040903), Chinese Academy of Science and the National Natural Science Fundation of China (Grant No.49823002).The authors are also grateful to Ms. Wang Xuan for typing the manuscript.
基金supported by the National Basic Research Program of China(2012CB911004,2010CB912303)Queensland-Chinese Academy of Sciences Biotechnology Fund(GJHZ1131,GJHZ201302)
文摘The herbal medicine Tong Luo Jiu Nao (TLJN) contains geniposide (GP) and ginsenoside Rgl at a molar ratio of i0:1. Rgl is the major component of another herbal medicine, panax notoginseng saponin (PNS). TLJN has been shown to strengthen brain function in humans, and in animals it improves learning and memory. We have previously shown that TLJN reduces amyloi- dogenic processing in Alzheimer's disease (AD) mouse models. Together this suggests TLJN may be a potential treatment for patients with dementia. Because chronic damage of the central nervous system by formaldehyde (FA) has been presented as a risk factor for age-associated cognitive dysfunction, in the present study we investigated the protective effect of both TLJN and GP in neuron-like cells exposed to FA. FA-exposed murine N2a neuroblastoma cells were incubated with TLJN, its main in- gredient GP, as well as PNS, to measure cell viability and morphology, the rate of apoptosis and expression of genes encoding Akt, FOXO3, Bcl2 and p53. The CCK-8 assay, cytoskeletal staining and flow cytometry were used to test cell viability, mor- phology and apoptosis, respectively. Fluorescent quantitative real-time PCR (qRT-PCR) was used to monitor changes in gene expression, and HPLC to determine the rate of FA clearance. Treatment of N2a cells with 0.09 mmol L-1 FA for 24 h signifi- cantly reduced cell viability, changed cell morphology and promoted apoptosis. Both TLJN and GP conferred neuroprotection to FA-treated N2a cells, whereas PNS, which had to be used at lower concentrations because of its toxicity, did not. Our data demonstrate that TLJN can rescue neuronal damage caused by FA and that its main ingredient, GP, has a major role in this ef- ficacy. This presents purified GP as a drug or lead compound for the treatment of AD.
基金supported by the Special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY201306026)the National Natural Science Foundation of China(Grant No.41275078)the National Basic Research Program of China(Grant No.2009CB421407)
文摘The relationship between the North Atlantic Oscillation(NAO) and the tropical cyclone frequency over the western North Pacific(WNPTCF) in summer is investigated by use of observation data. It is found that their linkage appears to have an interdecadal change from weak connection to strong connection. During the period of 1948–1977, the NAO was insignificantly correlated to the WNPTCF. However, during the period of 1980–2009, they were significantly correlated with stronger(weaker) NAO corresponding to more(fewer) tropical cyclones in the western North Pacific. The possible reason for such a different relationship between the NAO and the WNPTCF during the former and latter periods is further analyzed from the perspective of large-scale atmospheric circulations. When the NAO was stronger than normal in the latter period, an anomalous cyclonic circulation prevailed in the lower troposphere of the western North Pacific and the monsoon trough was intensified, concurrent with the eastward-shifting western Pacific subtropical high as well as anomalous low-level convergence and high-level divergence over the western North Pacific. These conditions favor the genesis and development of tropical cyclones, and thus more tropical cyclones appeared over the western North Pacific. In contrast, in the former period, the impact of the NAO on the aforementioned atmospheric circulations became insignificant, thereby weakening its linkage to the WNPTCF. Further study shows that the change of the wave activity flux associated with the NAO during the former and latter periods may account for such an interdecadal shift of the NAO–WNPTCF relationship.