Equilibrium geometries, charge distributions, stabilities and electronic properties of the Ag-adsorbed (MgO)n (n = 1-8) clusters have been investigated by density functional theory (DFT) with generalized gradient appr...Equilibrium geometries, charge distributions, stabilities and electronic properties of the Ag-adsorbed (MgO)n (n = 1-8) clusters have been investigated by density functional theory (DFT) with generalized gradient approximation (GGA) for exchange-correlation functional. The results show that hollow site is energetically preferred for n≥4, and the incoming Ag atoms tend to cluster on the existing Ag cluster. The Mulliken populations indicate that the interaction between the Ag atom and Magnesia clusters is mainly induced by a weak atomic polarization. The adsorbed Ag atom only causes charge redistributions of the atoms near itself. The effect of the adsorbed Ag atom on the bonding natures and structural features of Magnesia clusters is minor. Furthermore, the investigations on the first energy difference, fragmentation energies and electron affinities show that the Ag(MgO)4 and Ag(MgO)6 are the most stable among studied clusters.展开更多
基金Supported by the Startup Fund of High-level Personal for Shihezi University (Grant No. RCZX200747)
文摘Equilibrium geometries, charge distributions, stabilities and electronic properties of the Ag-adsorbed (MgO)n (n = 1-8) clusters have been investigated by density functional theory (DFT) with generalized gradient approximation (GGA) for exchange-correlation functional. The results show that hollow site is energetically preferred for n≥4, and the incoming Ag atoms tend to cluster on the existing Ag cluster. The Mulliken populations indicate that the interaction between the Ag atom and Magnesia clusters is mainly induced by a weak atomic polarization. The adsorbed Ag atom only causes charge redistributions of the atoms near itself. The effect of the adsorbed Ag atom on the bonding natures and structural features of Magnesia clusters is minor. Furthermore, the investigations on the first energy difference, fragmentation energies and electron affinities show that the Ag(MgO)4 and Ag(MgO)6 are the most stable among studied clusters.