为提高光伏并网发电系统的低电压穿越能力,提出一种基于电压定向矢量控制的低电压穿越(Low Voltage Ride-Through,LVRT)控制策略。该策略对光伏逆变器进行电压定向矢量控制,实现有功和无功功率解耦,在电网电压跌落期间,采用直流卸荷电...为提高光伏并网发电系统的低电压穿越能力,提出一种基于电压定向矢量控制的低电压穿越(Low Voltage Ride-Through,LVRT)控制策略。该策略对光伏逆变器进行电压定向矢量控制,实现有功和无功功率解耦,在电网电压跌落期间,采用直流卸荷电路稳定直流侧电压,根据电压的跌落深度补偿一定的无功功率以支撑电压恢复。通过PSCAD/EMTDC软件对采取LVRT控制策略前后的各电气量进行比较分析,结果表明,采用该策略光伏发电系统可以在电压跌落时保持并网运行,并补偿一定的无功功率以恢复并网点电压,实现低电压穿越。展开更多
当系统中风电装机容量比例较大时,系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。分析了双馈风电机组...当系统中风电装机容量比例较大时,系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。分析了双馈风电机组LVRT原理和基于转子撬棒保护(crow-bar protection)的LVRT控制策略,在电力系统仿真分析软件DIgSILENT/Power Factory中建立了双馈风电机组模型及其LVRT控制模型,以某地区风电系统为例进行仿真计算,分析转子撬棒投入与切除策略及动作时间对实现机组LVRT的影响。展开更多
随着光伏电站接入电网容量的不断增大,在电网发生扰动或故障情况下,光伏并网系统的脱网会进一步给电网带来不利影响。并网光伏电站应具备低电压穿越(Low Voltage Ride Through,LVRT)能力。在电流无差拍预测控制的基础上,对控制系统进行...随着光伏电站接入电网容量的不断增大,在电网发生扰动或故障情况下,光伏并网系统的脱网会进一步给电网带来不利影响。并网光伏电站应具备低电压穿越(Low Voltage Ride Through,LVRT)能力。在电流无差拍预测控制的基础上,对控制系统进行了改进。在低电压期间,通过发出无功功率支撑电网电压的恢复,采用限幅控制防止电流增大,投入并联卸荷电阻限制直流侧电压的升高,实现光伏电站的低电压穿越。最后采用新能源电力系统国家重点实验室中的光伏系统参数,建立仿真模型并进行了验证。结果表明在电网发生电压跌落时,控制系统能够抑制并网电流的增大并能发出无功功率支撑并网点电压,实现了低电压穿越,且系统在故障切除后能够快速恢复,验证了该LVRT控制策略的有效性,为下一步开展动模实验奠定了基础。展开更多
经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能...经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能力较低。提出一种改进的DFIG模型,加入了主动式DC-Chopper,与传统的Crowbar相配合,降低Crowbar动作的概率,使得DFIG转子侧变流器可以控制定子侧在故障时期继续提供无功功率。并利用此改进的DFIG与VSC-HVDC协调控制,改善风电场侧母线电压水平。通过算例仿真表明,在严重故障时采用改进式DFIG的Crowbar仍未动作。从而大大降低Crowbar动作的概率,双馈风电机组RSC故障期间可以继续投入运行并为电网提供无功支持。完成故障期间DFIG两侧变流器与VSC-HVDC风电场侧变流器(WFVSC)之间的无功协调,使风电场具有更好的低电压穿越能力(Low Voltage Ride Though,LVRT)。展开更多
具有低压穿越能力(Low voltage ride-though,LVRT)的光伏电站接入电网给保护带来一系列挑战。首先基于光伏电站的结构对光伏系统LVRT能力要求及反孤岛保护检测时间限制两个标准进行了介绍与分析,并基于PSCAD/EMTDC仿真分析了具有LVRT的...具有低压穿越能力(Low voltage ride-though,LVRT)的光伏电站接入电网给保护带来一系列挑战。首先基于光伏电站的结构对光伏系统LVRT能力要求及反孤岛保护检测时间限制两个标准进行了介绍与分析,并基于PSCAD/EMTDC仿真分析了具有LVRT的光电站故障特性。其次从光伏电站接入配电网和输电网两个角度,在总结了具有LVRT能力的光伏电站故障特性基础上,归纳提出了配电网电流三段保护、重合闸、熔断器等受光伏电站的影响问题。深入分析了光伏电站LVRT能力与逆变器直流侧保护、反孤岛保护,输电网主变保护与线路纵差和距离保护等协调配合问题。最后,提出相应的整定原则或改进措施。展开更多
在实现光伏电站低电压穿越(Low Voltage Ride Through,LVRT)的基础上,分析了光伏电站接入配电网LVRT对前加速自动重合闸的影响。根据故障发生的位置不同,基于时域分析对LVRT和前加速自动重合闸的延时进行整定,提出了光伏电站LVRT与前加...在实现光伏电站低电压穿越(Low Voltage Ride Through,LVRT)的基础上,分析了光伏电站接入配电网LVRT对前加速自动重合闸的影响。根据故障发生的位置不同,基于时域分析对LVRT和前加速自动重合闸的延时进行整定,提出了光伏电站LVRT与前加速自动重合闸的配合方案。该方法能够解决前加速重合闸重合时间与LVRT时限不匹配,导致并网点电压二次跌落和瞬时性故障发展成为永久性故障的问题。通过在电磁暂态仿真软件(Power Systems Computer Aided Design,PSCAD)中建立仿真模型,在10 k V配电网中验证了所提方法的有效性和正确性。展开更多
文摘为提高光伏并网发电系统的低电压穿越能力,提出一种基于电压定向矢量控制的低电压穿越(Low Voltage Ride-Through,LVRT)控制策略。该策略对光伏逆变器进行电压定向矢量控制,实现有功和无功功率解耦,在电网电压跌落期间,采用直流卸荷电路稳定直流侧电压,根据电压的跌落深度补偿一定的无功功率以支撑电压恢复。通过PSCAD/EMTDC软件对采取LVRT控制策略前后的各电气量进行比较分析,结果表明,采用该策略光伏发电系统可以在电压跌落时保持并网运行,并补偿一定的无功功率以恢复并网点电压,实现低电压穿越。
文摘随着光伏电站接入电网容量的不断增大,在电网发生扰动或故障情况下,光伏并网系统的脱网会进一步给电网带来不利影响。并网光伏电站应具备低电压穿越(Low Voltage Ride Through,LVRT)能力。在电流无差拍预测控制的基础上,对控制系统进行了改进。在低电压期间,通过发出无功功率支撑电网电压的恢复,采用限幅控制防止电流增大,投入并联卸荷电阻限制直流侧电压的升高,实现光伏电站的低电压穿越。最后采用新能源电力系统国家重点实验室中的光伏系统参数,建立仿真模型并进行了验证。结果表明在电网发生电压跌落时,控制系统能够抑制并网电流的增大并能发出无功功率支撑并网点电压,实现了低电压穿越,且系统在故障切除后能够快速恢复,验证了该LVRT控制策略的有效性,为下一步开展动模实验奠定了基础。
文摘经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能力较低。提出一种改进的DFIG模型,加入了主动式DC-Chopper,与传统的Crowbar相配合,降低Crowbar动作的概率,使得DFIG转子侧变流器可以控制定子侧在故障时期继续提供无功功率。并利用此改进的DFIG与VSC-HVDC协调控制,改善风电场侧母线电压水平。通过算例仿真表明,在严重故障时采用改进式DFIG的Crowbar仍未动作。从而大大降低Crowbar动作的概率,双馈风电机组RSC故障期间可以继续投入运行并为电网提供无功支持。完成故障期间DFIG两侧变流器与VSC-HVDC风电场侧变流器(WFVSC)之间的无功协调,使风电场具有更好的低电压穿越能力(Low Voltage Ride Though,LVRT)。
文摘具有低压穿越能力(Low voltage ride-though,LVRT)的光伏电站接入电网给保护带来一系列挑战。首先基于光伏电站的结构对光伏系统LVRT能力要求及反孤岛保护检测时间限制两个标准进行了介绍与分析,并基于PSCAD/EMTDC仿真分析了具有LVRT的光电站故障特性。其次从光伏电站接入配电网和输电网两个角度,在总结了具有LVRT能力的光伏电站故障特性基础上,归纳提出了配电网电流三段保护、重合闸、熔断器等受光伏电站的影响问题。深入分析了光伏电站LVRT能力与逆变器直流侧保护、反孤岛保护,输电网主变保护与线路纵差和距离保护等协调配合问题。最后,提出相应的整定原则或改进措施。
文摘在实现光伏电站低电压穿越(Low Voltage Ride Through,LVRT)的基础上,分析了光伏电站接入配电网LVRT对前加速自动重合闸的影响。根据故障发生的位置不同,基于时域分析对LVRT和前加速自动重合闸的延时进行整定,提出了光伏电站LVRT与前加速自动重合闸的配合方案。该方法能够解决前加速重合闸重合时间与LVRT时限不匹配,导致并网点电压二次跌落和瞬时性故障发展成为永久性故障的问题。通过在电磁暂态仿真软件(Power Systems Computer Aided Design,PSCAD)中建立仿真模型,在10 k V配电网中验证了所提方法的有效性和正确性。